Shen X, Nakata T, Mizuno S, Imoto I, Selcen D, Ohno K
Ann Clin Transl Neurol. 2023; 10(5):732-743.
PMID: 36891870
PMC: 10187723.
DOI: 10.1002/acn3.51756.
Fogarty M, Khurram O, Mantilla C, Sieck G
Front Cell Neurosci. 2022; 16:1025463.
PMID: 36385943
PMC: 9650098.
DOI: 10.3389/fncel.2022.1025463.
Tessier C, Sturgeon R, Emlaw J, McCluskey G, Perez-Areales F, daCosta C
Elife. 2022; 11.
PMID: 35781368
PMC: 9365395.
DOI: 10.7554/eLife.76504.
Lefebvre S, Taly A, Menny A, Medjebeur K, Corringer P
Elife. 2021; 10.
PMID: 34590583
PMC: 8504973.
DOI: 10.7554/eLife.60682.
Pan N, Zhang T, Hu S, Liu C, Wang Y
Channels (Austin). 2021; 15(1):507-515.
PMID: 34374321
PMC: 8366537.
DOI: 10.1080/19336950.2021.1961459.
Agonist efficiency from concentration-response curves: Structural implications and applications.
Indurthi D, Auerbach A
Biophys J. 2021; 120(9):1800-1813.
PMID: 33675765
PMC: 8204218.
DOI: 10.1016/j.bpj.2021.02.034.
Sleep-related hypermotor epilepsy associated mutations uncover important kinetic roles of α4β2- nicotinic acetylcholine receptor intracellular structures.
Weltzin M, George A, Lukas R, Whiteaker P
PLoS One. 2021; 16(3):e0247825.
PMID: 33657187
PMC: 7928491.
DOI: 10.1371/journal.pone.0247825.
A single historical substitution drives an increase in acetylcholine receptor complexity.
Emlaw J, Tessier C, McCluskey G, McNulty M, Sheikh Y, Burkett K
Proc Natl Acad Sci U S A. 2021; 118(7).
PMID: 33579823
PMC: 7896291.
DOI: 10.1073/pnas.2018731118.
Structure, Function and Physiology of 5-Hydroxytryptamine Receptors Subtype 3.
Gibbs E, Chakrapani S
Subcell Biochem. 2020; 96:373-408.
PMID: 33252737
DOI: 10.1007/978-3-030-58971-4_11.
The Structure, Function, and Physiology of the Fetal and Adult Acetylcholine Receptor in Muscle.
Cetin H, Beeson D, Vincent A, Webster R
Front Mol Neurosci. 2020; 13:581097.
PMID: 33013323
PMC: 7506097.
DOI: 10.3389/fnmol.2020.581097.
Pathways for nicotinic receptor desensitization.
Auerbach A
J Gen Physiol. 2020; 152(10).
PMID: 32910188
PMC: 7537344.
DOI: 10.1085/jgp.202012639.
The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents.
Wu Z, Lape R, Jopp-Saile L, OCallaghan B, Greiner T, Sivilotti L
J Physiol. 2020; 598(16):3417-3438.
PMID: 32445491
PMC: 7649747.
DOI: 10.1113/JP279803.
A review of efferent cholinergic synaptic transmission in the vestibular periphery and its functional implications.
Poppi L, Holt J, Lim R, Brichta A
J Neurophysiol. 2019; 123(2):608-629.
PMID: 31800345
PMC: 7132328.
DOI: 10.1152/jn.00053.2019.
Diaphragm neuromuscular transmission failure in aged rats.
Fogarty M, Gonzalez Porras M, Mantilla C, Sieck G
J Neurophysiol. 2019; 122(1):93-104.
PMID: 31042426
PMC: 6689786.
DOI: 10.1152/jn.00061.2019.
High bandwidth approaches in nanopore and ion channel recordings - A tutorial review.
Hartel A, Shekar S, Ong P, Schroeder I, Thiel G, Shepard K
Anal Chim Acta. 2019; 1061:13-27.
PMID: 30926031
PMC: 6860018.
DOI: 10.1016/j.aca.2019.01.034.
Distinctive single-channel properties of α4β2-nicotinic acetylcholine receptor isoforms.
Weltzin M, George A, Lukas R, Whiteaker P
PLoS One. 2019; 14(3):e0213143.
PMID: 30845161
PMC: 6405073.
DOI: 10.1371/journal.pone.0213143.
Full and partial agonists evoke distinct structural changes in opening the muscle acetylcholine receptor channel.
Mukhtasimova N, Sine S
J Gen Physiol. 2018; 150(5):713-729.
PMID: 29680816
PMC: 5940249.
DOI: 10.1085/jgp.201711881.
Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ε-subunit.
Shen X, Brengman J, Shen S, Durmus H, Preethish-Kumar V, Yuceyar N
JCI Insight. 2018; 3(2).
PMID: 29367459
PMC: 5821208.
DOI: 10.1172/jci.insight.97826.
Cholinergic modulation of the hippocampal region and memory function.
Haam J, Yakel J
J Neurochem. 2017; 142 Suppl 2:111-121.
PMID: 28791706
PMC: 5645066.
DOI: 10.1111/jnc.14052.
Identification of a pre-active conformation of a pentameric channel receptor.
Menny A, Lefebvre S, Schmidpeter P, Drege E, Fourati Z, Delarue M
Elife. 2017; 6.
PMID: 28294942
PMC: 5398890.
DOI: 10.7554/eLife.23955.