» Articles » PMID: 6242243

Temperature Dependence of Mitochondrial Oligomycin-sensitive Proton Transport ATPase

Overview
Publisher Springer
Date 1984 Dec 1
PMID 6242243
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

The temperature dependence of the oligomycin-sensitive ATPase (complex V) kinetic parameters has been investigated in enzyme preparations of different phospholipid composition. In submitochondrial particles, isolated complex V, and complex V reconstituted in dimyristoyl lecithin vesicles, the Arrhenius plots show discontinuities in the range 18-28 degrees C, while no discontinuity is detected with dioleoyl lecithin recombinant. Van't Hoff plots of Km also show breaks in the same temperature interval, with the exception of the dioleoyl-enzyme vesicles, where Km is unchanged. Thermodynamic analysis of the ATPase reaction shows that DMPC-complex V has rather larger values of activation enthalpy and activation entropy below the transition temperature (24 degrees C) than those of the other preparations, while all enzyme preparations show similar free energies of activation (14.3-18.5 kcal/mol). The results indicate that temperature and lipid composition influence to a different extent both kinetic and thermodynamic parameters of ATP hydrolysis catalyzed by the mitochondrial ATPase.

Citing Articles

Hyperoxia fully protects mitochondria of explanted livers.

Sgarbi G, Giannone F, Casalena G, Baracca A, Baldassare M, Longobardi P J Bioenerg Biomembr. 2011; 43(6):673-82.

PMID: 22015484 DOI: 10.1007/s10863-011-9390-3.


Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release.

Aleardi A, Benard G, Augereau O, Malgat M, Talbot J, Mazat J J Bioenerg Biomembr. 2005; 37(4):207-25.

PMID: 16167177 DOI: 10.1007/s10863-005-6631-3.


Structural and functional aspects of the respiratory chain of synaptic and nonsynaptic mitochondria derived from selected brain regions.

Battino M, Bertoli E, Formiggini G, Sassi S, Gorini A, Villa R J Bioenerg Biomembr. 1991; 23(2):345-63.

PMID: 1646801 DOI: 10.1007/BF00762227.

References
1.
Parenti Castelli G, Baracca A, Fato R, RABBI A . A temperature-dependent structural change of mitochondrial ATPase. Biochem Biophys Res Commun. 1983; 111(2):366-72. DOI: 10.1016/0006-291x(83)90315-7. View

2.
PENEFSKY H, Warner R . Partial resolution of the enzymes catalyzing oxidative phosphorylation. VI. Studies on the mechanism of cold inactivation of mitochondrial adenosine triphosphatase. J Biol Chem. 1965; 240(12):4694-702. View

3.
Sandermann Jr H . The reactivation of C55-isoprenoid-alcohol-phosphokinase apoprotein by lipids. Evidence for lipid hydration in lipoprotein function. Eur J Biochem. 1974; 43(2):415-22. DOI: 10.1111/j.1432-1033.1974.tb03427.x. View

4.
Amzel L, Pedersen P . Proton atpases: structure and mechanism. Annu Rev Biochem. 1983; 52:801-24. DOI: 10.1146/annurev.bi.52.070183.004101. View

5.
Lenaz G, Curatola G, Mazzanti L, Zolese G, Ferretti G . Electron spin resonance studies of the effects of lipids on the environment of proteins in mitochondrial membranes. Arch Biochem Biophys. 1983; 223(2):369-80. DOI: 10.1016/0003-9861(83)90601-x. View