» Articles » PMID: 6185696

In Vitro Transcription of Defective Interfering Particles of Influenza Virus Produces Polyadenylic Acid-containing Complementary RNAs

Overview
Journal J Virol
Date 1983 Jan 1
PMID 6185696
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Influenza virus defective interfering (DI) RNAs, which originate from polymerase genes by simple internal deletion, can be transcribed in vitro. These DI RNA transcripts contain covalently linked polyadenylic acid, and their synthesis is dependent on ApG or capped RNAs as primers. Furthermore, like the standard viral RNA transcripts, they are complementary in nature and are slightly smaller in size compared with the corresponding DI RNAs. Hybridization of the specific DI RNA transcripts with the corresponding DI RNA segments and analysis of the duplex RNA by gel electrophoresis indicate that they are not incomplete polymerase gene transcripts, but rather the transcripts of the DI RNAs. Since influenza virus DI RNAs contain both the 5' and the 3' termini and transcribe polyadenylic acid-containing complementary RNAs in vitro the mechanism of interference may differ from that of the 5' DI RNAs of Sendai and vesicular stomatitis viruses.

Citing Articles

Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome.

Ranum J, Ledwith M, Alnaji F, Diefenbacher M, Orton R, Sloan E Nucleic Acids Res. 2024; 52(6):3199-3212.

PMID: 38407436 PMC: 11014358. DOI: 10.1093/nar/gkae133.


Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome.

Ranum J, Ledwith M, Alnaji F, Diefenbacher M, Orton R, Sloan E bioRxiv. 2024; .

PMID: 38168266 PMC: 10760031. DOI: 10.1101/2023.12.12.570638.


Cell-to-Cell Variation in Defective Virus Expression and Effects on Host Responses during Influenza Virus Infection.

Wang C, Forst C, Chou T, Geber A, Wang M, Hamou W mBio. 2020; 11(1).

PMID: 31937643 PMC: 6960286. DOI: 10.1128/mBio.02880-19.


Defective viral genomes are key drivers of the virus-host interaction.

Vignuzzi M, Lopez C Nat Microbiol. 2019; 4(7):1075-1087.

PMID: 31160826 PMC: 7097797. DOI: 10.1038/s41564-019-0465-y.


Expression of defective-interfering influenza virus-specific transcripts and polypeptides in infected cells.

Akkina R, Chambers T, Nayak D J Virol. 1984; 51(2):395-403.

PMID: 6205168 PMC: 254451. DOI: 10.1128/JVI.51.2.395-403.1984.


References
1.
Bay P, REICHMANN M . In vitro and in vivo inhibition of primary transcription of vesicular stomatitis virus by a defective interfering particle. J Virol. 1982; 41(1):172-82. PMC: 256738. DOI: 10.1128/JVI.41.1.172-182.1982. View

2.
Nayak D, Sivasubramanian N, Davis A, Cortini R, Sung J . Complete sequence analyses show that two defective interfering influenza viral RNAs contain a single internal deletion of a polymerase gene. Proc Natl Acad Sci U S A. 1982; 79(7):2216-20. PMC: 346162. DOI: 10.1073/pnas.79.7.2216. View

3.
VON MAGNUS P . Incomplete forms of influenza virus. Adv Virus Res. 1954; 2:59-79. DOI: 10.1016/s0065-3527(08)60529-1. View

4.
Floyd R, Stone M, Joklik W . Separation of single-stranded ribonucleic acids by acrylamide-agarose-urea gel electrophoresis. Anal Biochem. 1974; 59(2):599-609. DOI: 10.1016/0003-2697(74)90313-3. View

5.
Abraham G, Rhodes D, Banerjee A . Novel initiation of RNA synthesis in vitro by vesicular stomatitis virus. Nature. 1975; 255(5503):37-40. DOI: 10.1038/255037a0. View