Govender K, Walser C, Cabrales P
J Appl Physiol (1985). 2023; 136(1):213-223.
PMID: 38059289
PMC: 11219011.
DOI: 10.1152/japplphysiol.00397.2023.
Le A, Fenech M
Front Physiol. 2022; 13:886675.
PMID: 35574441
PMC: 9099138.
DOI: 10.3389/fphys.2022.886675.
Govender K, Cabrales P
J Appl Physiol (1985). 2022; 132(3):794-810.
PMID: 35085033
PMC: 8917920.
DOI: 10.1152/japplphysiol.00726.2021.
Thangaswamy S, Branch C, Ambadipudi K, Acharya S
Biomolecules. 2021; 11(10).
PMID: 34680105
PMC: 8533533.
DOI: 10.3390/biom11101473.
Govender K, Munoz C, Williams A, Cabrales P
Microvasc Res. 2020; 134:104125.
PMID: 33346023
PMC: 7856175.
DOI: 10.1016/j.mvr.2020.104125.
A Review on Microvascular Hemodynamics: The Control of Blood Flow Distribution and Tissue Oxygenation.
Munoz C, Lucas A, Williams A, Cabrales P
Crit Care Clin. 2020; 36(2):293-305.
PMID: 32172814
PMC: 7093304.
DOI: 10.1016/j.ccc.2019.12.011.
A Model of Pressure and Flow Distribution in Branching Networks.
Popel A
J Appl Mech. 2017; 47(2):247-253.
PMID: 28713175
PMC: 5510952.
DOI: 10.1115/1.3153650.
In vivo microscopy of hemozoin: towards a needle free diagnostic for malaria.
Burnett J, Carns J, Richards-Kortum R
Biomed Opt Express. 2015; 6(9):3462-74.
PMID: 26417515
PMC: 4574671.
DOI: 10.1364/BOE.6.003462.
Neurovascular coupling: in vivo optical techniques for functional brain imaging.
Liao L, Tsytsarev V, Delgado-Martinez I, Li M, Erzurumlu R, Vipin A
Biomed Eng Online. 2013; 12:38.
PMID: 23631798
PMC: 3655834.
DOI: 10.1186/1475-925X-12-38.
Oxygen transport in the microcirculation and its regulation.
Pittman R
Microcirculation. 2012; 20(2):117-37.
PMID: 23025284
PMC: 3574207.
DOI: 10.1111/micc.12017.
Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals.
Kim T, Goodwill P, Chen Y, Conolly S, Schaffer C, Liepmann D
PLoS One. 2012; 7(6):e38590.
PMID: 22761686
PMC: 3383695.
DOI: 10.1371/journal.pone.0038590.
Laser speckle flowmetry method for measuring spatial and temporal hemodynamic alterations throughout large microvascular networks.
Meisner J, Sumer S, Murrell K, Higgins T, Price R
Microcirculation. 2012; 19(7):619-31.
PMID: 22591575
PMC: 3434303.
DOI: 10.1111/j.1549-8719.2012.00197.x.
Shedding of the endothelial glycocalyx in arterioles, capillaries, and venules and its effect on capillary hemodynamics during inflammation.
Lipowsky H, Gao L, Lescanic A
Am J Physiol Heart Circ Physiol. 2011; 301(6):H2235-45.
PMID: 21926341
PMC: 3233809.
DOI: 10.1152/ajpheart.00803.2011.
A polymeric micro-optical interface for flow monitoring in biomicrofluidics.
Sapuppo F, Llobera A, Schembri F, Intaglietta M, Cadarso V, Bucolo M
Biomicrofluidics. 2010; 4(2).
PMID: 20697581
PMC: 2917872.
DOI: 10.1063/1.3435333.
Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.
Ong P, Namgung B, Johnson P, Kim S
Am J Physiol Heart Circ Physiol. 2010; 298(6):H1870-8.
PMID: 20348228
PMC: 2886628.
DOI: 10.1152/ajpheart.01182.2009.
Functional optical imaging at the microscopic level.
Salazar Vazquez B, Hightower C, Sapuppo F, Tartakovsky D, Intaglietta M
J Biomed Opt. 2010; 15(1):011102.
PMID: 20210428
PMC: 2816989.
DOI: 10.1117/1.3280270.
Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice.
Kaul D, Liu X, Chang H, Nagel R, Fabry M
J Clin Invest. 2004; 114(8):1136-45.
PMID: 15489961
PMC: 522244.
DOI: 10.1172/JCI21633.
Detection of pulsatile blood flow cycle in frog microvessels by image velocimetry.
Singh S, Singh M
Med Biol Eng Comput. 2002; 40(3):269-72.
PMID: 12195971
DOI: 10.1007/BF02344206.
Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice.
Kaul D, Hebbel R
J Clin Invest. 2000; 106(3):411-20.
PMID: 10930444
PMC: 314325.
DOI: 10.1172/JCI9225.
In vivo blood flow abnormalities in the transgenic knockout sickle cell mouse.
Embury S, Mohandas N, Paszty C, Cooper P, Cheung A
J Clin Invest. 1999; 103(6):915-20.
PMID: 10079113
PMC: 408150.
DOI: 10.1172/JCI5977.