Wohrle S, Reuter C, Rupp A, Andermann M
Front Neurosci. 2024; 18:1383554.
PMID: 38650622
PMC: 11034485.
DOI: 10.3389/fnins.2024.1383554.
Chan P, Dong M, Li H
Research (Wash D C). 2020; 2019:2369041.
PMID: 32043080
PMC: 7006947.
DOI: 10.34133/2019/2369041.
Harrison P, Pearce M
Psychol Rev. 2019; 127(2):216-244.
PMID: 31868392
PMC: 7032667.
DOI: 10.1037/rev0000169.
Smit E, Milne A, Dean R, Weidemann G
PLoS One. 2019; 14(6):e0218570.
PMID: 31226170
PMC: 6588276.
DOI: 10.1371/journal.pone.0218570.
Popescu T, Neuser M, Neuwirth M, Bravo F, Mende W, Boneh O
Sci Rep. 2019; 9(1):1070.
PMID: 30705379
PMC: 6355932.
DOI: 10.1038/s41598-018-35873-8.
Computational Approach to Musical Consonance and Dissonance.
Trulla L, Di Stefano N, Giuliani A
Front Psychol. 2018; 9:381.
PMID: 29670552
PMC: 5893895.
DOI: 10.3389/fpsyg.2018.00381.
Vocal similarity predicts the relative attraction of musical chords.
Bowling D, Purves D, Gill K
Proc Natl Acad Sci U S A. 2017; 115(1):216-221.
PMID: 29255031
PMC: 5776805.
DOI: 10.1073/pnas.1713206115.
Animal Pitch Perception: Melodies and Harmonies.
Hoeschele M
Comp Cogn Behav Rev. 2017; 12:5-18.
PMID: 28649291
PMC: 5479468.
DOI: 10.3819/CCBR.2017.120002.
Sensory cortical response to uncertainty and low salience during recognition of affective cues in musical intervals.
Bravo F, Cross I, Stamatakis E, Rohrmeier M
PLoS One. 2017; 12(4):e0175991.
PMID: 28422990
PMC: 5396975.
DOI: 10.1371/journal.pone.0175991.
On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.
Cousineau M, Bidelman G, Peretz I, Lehmann A
PLoS One. 2016; 10(12):e0145439.
PMID: 26720000
PMC: 4697839.
DOI: 10.1371/journal.pone.0145439.
Frequency ratios and the perception of tone patterns.
Schellenberg E, Trehub S
Psychon Bull Rev. 2013; 1(2):191-201.
PMID: 24203470
DOI: 10.3758/BF03200773.
Differences in mismatch responses to vowels and musical intervals: MEG evidence.
Bergelson E, Shvartsman M, Idsardi W
PLoS One. 2013; 8(10):e76758.
PMID: 24143193
PMC: 3797141.
DOI: 10.1371/journal.pone.0076758.
The role of the auditory brainstem in processing musically relevant pitch.
Bidelman G
Front Psychol. 2013; 4:264.
PMID: 23717294
PMC: 3651994.
DOI: 10.3389/fpsyg.2013.00264.
The basis of musical consonance as revealed by congenital amusia.
Cousineau M, McDermott J, Peretz I
Proc Natl Acad Sci U S A. 2012; 109(48):19858-63.
PMID: 23150582
PMC: 3511708.
DOI: 10.1073/pnas.1207989109.
Learning and liking of melody and harmony: further studies in artificial grammar learning.
Loui P
Top Cogn Sci. 2012; 4(4):554-67.
PMID: 22760940
PMC: 3465524.
DOI: 10.1111/j.1756-8765.2012.01208.x.
Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.
Bidelman G, Heinz M
J Acoust Soc Am. 2011; 130(3):1488-502.
PMID: 21895089
PMC: 3188968.
DOI: 10.1121/1.3605559.
A biological rationale for musical scales.
Gill K, Purves D
PLoS One. 2009; 4(12):e8144.
PMID: 19997506
PMC: 2779864.
DOI: 10.1371/journal.pone.0008144.
Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.
Bidelman G, Krishnan A
J Neurosci. 2009; 29(42):13165-71.
PMID: 19846704
PMC: 2804402.
DOI: 10.1523/JNEUROSCI.3900-09.2009.
How a cognitive psychologist came to seek universal laws.
Shepard R
Psychon Bull Rev. 2004; 11(1):1-23.
PMID: 15116981
DOI: 10.3758/bf03206455.
The statistical structure of human speech sounds predicts musical universals.
Schwartz D, Howe C, Purves D
J Neurosci. 2003; 23(18):7160-8.
PMID: 12904476
PMC: 6740660.