Chakraborty S, Andersen K, Merico A, Riemann L
Sci Adv. 2025; 11(8):eadq4693.
PMID: 39970200
PMC: 11837998.
DOI: 10.1126/sciadv.adq4693.
Franke P, Freiberger S, Zhang L, Einsle O
Nature. 2025; 637(8047):998-1004.
PMID: 39779845
PMC: 11754109.
DOI: 10.1038/s41586-024-08355-3.
Narehood S, Cook B, Srisantitham S, Eng V, Shiau A, McGuire K
Nature. 2025; 637(8047):991-997.
PMID: 39779844
PMC: 11812610.
DOI: 10.1038/s41586-024-08311-1.
Thomas B, Lechner S, Ross H, Joris B, Glick B, Stegelmeier A
Plants (Basel). 2024; 13(21).
PMID: 39519984
PMC: 11548230.
DOI: 10.3390/plants13213069.
Skulachev V, Vyssokikh M, Chernyak B, Mulkidjanian A, Skulachev M, Shilovsky G
Int J Mol Sci. 2023; 24(16).
PMID: 37628720
PMC: 10454651.
DOI: 10.3390/ijms241612540.
Genetic Regulation of Alginate Production in a Bacterium of Biotechnological Interest: A Mini-Review.
Nunez C, Lopez-Pliego L, Ahumada-Manuel C, Castaneda M
Front Microbiol. 2022; 13:845473.
PMID: 35401471
PMC: 8988225.
DOI: 10.3389/fmicb.2022.845473.
Competitive Biosynthesis of Bacterial Alginate Using 12 for Tissue Engineering Applications.
Dudun A, Akoulina E, Zhuikov V, Makhina T, Voinova V, Belishev N
Polymers (Basel). 2022; 14(1).
PMID: 35012152
PMC: 8747204.
DOI: 10.3390/polym14010131.
Metabolic Model of the Nitrogen-Fixing Obligate Aerobe Azotobacter vinelandii Predicts Its Adaptation to Oxygen Concentration and Metal Availability.
Alleman A, Mus F, Peters J
mBio. 2021; 12(6):e0259321.
PMID: 34903060
PMC: 8686835.
DOI: 10.1128/mBio.02593-21.
Quantitative models of nitrogen-fixing organisms.
Inomura K, Deutsch C, Masuda T, Prasil O, Follows M
Comput Struct Biotechnol J. 2020; 18:3905-3924.
PMID: 33335688
PMC: 7733014.
DOI: 10.1016/j.csbj.2020.11.022.
Bacterial Oxidases of the Cytochrome Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets.
Borisov V, Siletsky S, Paiardini A, Hoogewijs D, Forte E, Giuffre A
Antioxid Redox Signal. 2020; 34(16):1280-1318.
PMID: 32924537
PMC: 8112716.
DOI: 10.1089/ars.2020.8039.
Two-Stage Continuous Conversion of Carbon Monoxide to Ethylene by Whole Cells of Azotobacter vinelandii.
Natzke J, Bruno-Barcena J
Appl Environ Microbiol. 2020; 86(11).
PMID: 32198172
PMC: 7237774.
DOI: 10.1128/AEM.00446-20.
A quantitative model of nitrogen fixation in the presence of ammonium.
Inomura K, Bragg J, Riemann L, Follows M
PLoS One. 2018; 13(11):e0208282.
PMID: 30496286
PMC: 6264846.
DOI: 10.1371/journal.pone.0208282.
Azotobacter vinelandii Nitrogenase Activity, Hydrogen Production, and Response to Oxygen Exposure.
Natzke J, Noar J, Bruno-Barcena J
Appl Environ Microbiol. 2018; 84(16).
PMID: 29915110
PMC: 6070762.
DOI: 10.1128/AEM.01208-18.
A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii.
Inomura K, Bragg J, Follows M
ISME J. 2016; 11(1):166-175.
PMID: 27740611
PMC: 5315487.
DOI: 10.1038/ismej.2016.97.
Azotobacter Genomes: The Genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412).
Robson R, Jones R, Robson R, Schwartz A, Richardson T
PLoS One. 2015; 10(6):e0127997.
PMID: 26061173
PMC: 4465626.
DOI: 10.1371/journal.pone.0127997.
Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation.
Ghodhbane-Gtari F, Hezbri K, Ktari A, Sbissi I, Beauchemin N, Gtari M
Biomed Res Int. 2014; 2014:568549.
PMID: 24987692
PMC: 4058466.
DOI: 10.1155/2014/568549.
Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.
Banerjee A, Supakar S, Banerjee R
PLoS One. 2014; 9(1):e84574.
PMID: 24416247
PMC: 3887007.
DOI: 10.1371/journal.pone.0084574.
Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus.
Alqueres S, Oliveira J, Nogueira E, Guedes H, Oliveira P, Camara F
Arch Microbiol. 2010; 192(10):835-41.
PMID: 20697694
PMC: 2939349.
DOI: 10.1007/s00203-010-0609-1.
A tribute to Howard Dalton and methane monooxygenase.
Anthony C
Sci Prog. 2009; 91(Pt 4):401-15.
PMID: 19192737
PMC: 10367524.
DOI: 10.3184/003685008X395878.
Alternative Function of the Electron Transport System in Azotobacter vinelandii: Removal of Excess Reductant by the Cytochrome d Pathway.
Liu J, Lee F, Lin C, Yao X, Davenport J, Wong T
Appl Environ Microbiol. 1995; 61(11):3998-4003.
PMID: 16535163
PMC: 1388599.
DOI: 10.1128/aem.61.11.3998-4003.1995.