Cajal D, Hernando D, Lazaro J, Laguna P, Gil E, Bailon R
Sensors (Basel). 2022; 22(15).
PMID: 35957328
PMC: 9371086.
DOI: 10.3390/s22155774.
Rossert C, Solinas S, DAngelo E, Dean P, Porrill J
Front Cell Neurosci. 2014; 8:304.
PMID: 25352777
PMC: 4195316.
DOI: 10.3389/fncel.2014.00304.
Farina D, Negro F, Jiang N
J Physiol. 2013; 591(10):2403-18.
PMID: 23507877
PMC: 3678033.
DOI: 10.1113/jphysiol.2012.246082.
Scheff J, Mavroudis P, Calvano S, Lowry S, Androulakis I
Physiol Genomics. 2011; 43(16):951-64.
PMID: 21673075
PMC: 3180733.
DOI: 10.1152/physiolgenomics.00040.2011.
Negro F, Farina D
J Physiol. 2010; 589(Pt 3):629-37.
PMID: 21135042
PMC: 3055547.
DOI: 10.1113/jphysiol.2010.202473.
A comparison of two Hilbert spectral analyses of heart rate variability.
Ihlen E
Med Biol Eng Comput. 2009; 47(10):1035-44.
PMID: 19521730
DOI: 10.1007/s11517-009-0500-x.
Application of empirical mode decomposition to heart rate variability analysis.
Echeverria J, Crowe J, Woolfson M, Hayes-Gill B
Med Biol Eng Comput. 2001; 39(4):471-9.
PMID: 11523737
DOI: 10.1007/BF02345370.
Spectral analysis of heart rate variability using the integral pulse frequency modulation model.
Mitov I
Med Biol Eng Comput. 2001; 39(3):348-54.
PMID: 11465890
DOI: 10.1007/BF02345290.
Comparison of heart rate variability spectra using generic relationships of their input signals.
Mitov I, Daskalov I
Med Biol Eng Comput. 1999; 36(5):573-80.
PMID: 10367440
DOI: 10.1007/BF02524426.
A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade.
Paulin M
Biol Cybern. 1993; 69(1):67-76.
PMID: 8334191
DOI: 10.1007/BF00201409.
Spectra of data sampled at frequency-modulated rates in application to cardiovascular signals: Part 2. Evaluation of Fourier transform algorithms.
TenVoorde B, Faes T, Rompelman O
Med Biol Eng Comput. 1994; 32(1):71-6.
PMID: 8182965
DOI: 10.1007/BF02512481.
Spectra of data sampled at frequency-modulated rates in application to cardiovascular signals: Part 1. Analytical derivation of the spectra.
TenVoorde B, Faes J, Rompelman O
Med Biol Eng Comput. 1994; 32(1):63-70.
PMID: 8182964
DOI: 10.1007/BF02512480.
Alias-free sampling of neuronal spike trains.
French A, Holden A
Kybernetik. 1971; 8(5):165-71.
PMID: 5090379
DOI: 10.1007/BF00291117.
The estimation of the frequency response function of a mechanoreceptor.
French A, Holden A, Stein R
Kybernetik. 1972; 11(1):15-23.
PMID: 5052985
DOI: 10.1007/BF00267761.
The frequency response, coherence, and information capacity of two neuronal models.
Stein R, French A, Holden A
Biophys J. 1972; 12(3):295-322.
PMID: 5016114
PMC: 1484090.
DOI: 10.1016/S0006-3495(72)86087-9.
Adapting coincidence scalers and neural modelling studies of vision.
van de Grind W, Koenderink J, van der Heyde G, Landman H, Bouman M
Kybernetik. 1971; 8(3):85-105.
PMID: 4929583
DOI: 10.1007/BF00272290.
The encoder mechanism of receptor neurons.
Michaelis B, Chaplain R
Kybernetik. 1973; 13(1):6-23.
PMID: 4747257
DOI: 10.1007/BF00289106.
Examples of power spectra of uni-variate point processes.
Ten Hoopen M
Kybernetik. 1974; 16(3):145-53.
PMID: 4437125
DOI: 10.1007/BF00271718.
[Information theory and signal processing in sense organs and the central nervous system].
Grusser O
Naturwissenschaften. 1972; 59(10):436-47.
PMID: 4404458
DOI: 10.1007/BF00592878.
Event train decoders with many inputs, pulse density versus momentaneous frequency.
Koenderink J, van Doorn A
Kybernetik. 1973; 13(4):215-22.
PMID: 4359478
DOI: 10.1007/BF00274886.