Ronca F, Raggi A
Mol Cell Biochem. 2023; 479(4):793-809.
PMID: 37184757
PMC: 11016001.
DOI: 10.1007/s11010-023-04763-7.
Yi-Dan H, Ying-Xin Z, Shi-Wei Y, Yu-Jie Z
Front Cardiovasc Med. 2021; 8:675608.
PMID: 34395552
PMC: 8355518.
DOI: 10.3389/fcvm.2021.675608.
Bast-Habersbrunner A, Fromme T
Front Endocrinol (Lausanne). 2020; 11:118.
PMID: 32210919
PMC: 7076073.
DOI: 10.3389/fendo.2020.00118.
Ranieri-Raggi M, Moir A, Raggi A
Biomolecules. 2014; 4(2):474-97.
PMID: 24970226
PMC: 4101493.
DOI: 10.3390/biom4020474.
Szydlowska M, Roszkowska A
Mol Cell Biochem. 2008; 318(1-2):1-5.
PMID: 18493842
DOI: 10.1007/s11010-008-9773-x.
Full-size form of human liver AMP-deaminase?.
Szydlowska M, Chodorowski Z, Rybakowska I, Nagel-Starczynowska G, Kaletha K
Mol Cell Biochem. 2005; 266(1-2):133-7.
PMID: 15646034
DOI: 10.1023/b:mcbi.0000049150.19623.e8.
AMP-deaminase from normal and cirrhotic human liver: a comparative study.
Dutka P, Szydlowska M, Chodorowski Z, Rybakowska I, Nagel-Starczynowska G, Kaletha K
Mol Cell Biochem. 2004; 262(1-2):119-26.
PMID: 15532716
DOI: 10.1023/b:mcbi.0000038217.71621.88.
AMP-deaminase from human term placenta.
Swieca A, Rybakowska I, Nagel-Starczynowska G, Kossowska E, Kaletha K
Mol Cell Biochem. 2003; 252(1-2):363-7.
PMID: 14577611
DOI: 10.1023/a:1025560829180.
Human liver AMP-deaminase--oligomeric forms of the enzyme.
Szydlowska M, Nagel-Starczynowska G, Rybakowska I, Swieca A, Kaletha K
Mol Cell Biochem. 2002; 241(1-2):81-6.
PMID: 12482028
DOI: 10.1023/a:1020817315053.
Regulation of skeletal-muscle AMP deaminase: involvement of histidine residues in the pH-dependent inhibition of the rabbit enzyme by ATP.
Ranieri-Raggi M, Ronca F, Sabbatini A, Raggi A
Biochem J. 1995; 309 ( Pt 3):845-52.
PMID: 7639701
PMC: 1135709.
DOI: 10.1042/bj3090845.
Efflux of adenosine and total adenylate catabolites during alterations of the cellular energy state. An NMR study of continuous and discontinuous ischemia.
Vuorinen K, Peuhkurinen K, Kiviluoma K, Hassinen I
Basic Res Cardiol. 1995; 90(3):211-9.
PMID: 7575374
DOI: 10.1007/BF00805664.
Effect of temperature on the activity of AMP deaminase from chicken heart and skeletal muscle at different stages of development.
Kaletha K, Skladanowski A
Experientia. 1981; 37(3):232-4.
PMID: 7238772
DOI: 10.1007/BF01991627.
The cause of hepatic accumulation of fructose 1-phosphate on fructose loading.
Woods H, EGGLESTON L, KREBS H
Biochem J. 1970; 119(3):501-10.
PMID: 5500310
PMC: 1179380.
DOI: 10.1042/bj1190501.
Equilibrium of nucleotides in frog sartorius muscle during an isometric tetanus at 20 degrees C.
Canfield P, Marechal G
J Physiol. 1973; 232(3):453-66.
PMID: 4543341
PMC: 1350503.
DOI: 10.1113/jphysiol.1973.sp010280.
Regulatory properties of AMP deaminase isoenzymes from rabbit red muscle.
Raggi A, Ranieri-Raggi M
Biochem J. 1987; 242(3):875-9.
PMID: 3593281
PMC: 1147790.
DOI: 10.1042/bj2420875.
Possible mechanisms of the anaerobic threshold. A review.
Walsh M, BANISTER E
Sports Med. 1988; 5(5):269-302.
PMID: 3291051
DOI: 10.2165/00007256-198805050-00001.
Regulation of skeletal-muscle AMP deaminase. Evidence for a highly pH-dependent inhibition by ATP of the homogeneous derivative of the rabbit enzyme yielded by limited proteolysis.
Ranieri-Raggi M, Raggi A
Biochem J. 1990; 272(3):755-9.
PMID: 2268300
PMC: 1149773.
DOI: 10.1042/bj2720755.
Muscle ATP loss and lactate accumulation at different work intensities in the exercising Thoroughbred horse.
Harris R, Marlin D, Snow D, HARKNESS R
Eur J Appl Physiol Occup Physiol. 1991; 62(4):235-44.
PMID: 2044532
DOI: 10.1007/BF00571546.
Adenine nucleotide degradation in the thoroughbred horse with increasing exercise duration.
Sewell D, Harris R
Eur J Appl Physiol Occup Physiol. 1992; 65(3):271-7.
PMID: 1396658
DOI: 10.1007/BF00705093.
The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase.
Van den Berghe G, Bronfman M, Vanneste R, HERS H
Biochem J. 1977; 162(3):601-9.
PMID: 869906
PMC: 1164643.
DOI: 10.1042/bj1620601.