McDaniel C, Simsek M, Chandel A, Ozbudak E
Sci Adv. 2024; 10(4):eadk8937.
PMID: 38277458
PMC: 10816718.
DOI: 10.1126/sciadv.adk8937.
Kato S, Inomata H
iScience. 2023; 26(5):106585.
PMID: 37192977
PMC: 10182286.
DOI: 10.1016/j.isci.2023.106585.
Della Gaspera B, Weill L, Chanoine C
Front Cell Dev Biol. 2022; 9:790847.
PMID: 35111756
PMC: 8802780.
DOI: 10.3389/fcell.2021.790847.
Shang N, Lee J, Huang T, Wang C, Lee T, C Mok S
Cell Tissue Res. 2020; 381(3):493-508.
PMID: 32607799
PMC: 7431403.
DOI: 10.1007/s00441-020-03237-2.
Elsdale T, Wasoff F
Wilehm Roux Arch Dev Biol. 2017; 180(2):121-147.
PMID: 28304760
DOI: 10.1007/BF00848102.
Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis.
Sabillo A, Ramirez J, Domingo C
Semin Cell Dev Biol. 2016; 51:80-91.
PMID: 26853935
PMC: 4798873.
DOI: 10.1016/j.semcdb.2016.02.006.
Did the notochord evolve from an ancient axial muscle? The axochord hypothesis.
Brunet T, Lauri A, Arendt D
Bioessays. 2015; 37(8):836-50.
PMID: 26172338
PMC: 5054868.
DOI: 10.1002/bies.201500027.
Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis.
Curran K, Allen L, Porter B, Dodge J, Lope C, Willadsen G
PLoS One. 2014; 9(9):e108266.
PMID: 25238599
PMC: 4169625.
DOI: 10.1371/journal.pone.0108266.
The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis.
Leal M, Fickel S, Sabillo A, Ramirez J, Martinez Vergara H, Nave C
Dev Dyn. 2013; 243(4):509-26.
PMID: 24357195
PMC: 4040348.
DOI: 10.1002/dvdy.24092.
Origin of muscle satellite cells in the Xenopus embryo.
Daughters R, Chen Y, Slack J
Development. 2011; 138(5):821-30.
PMID: 21270051
PMC: 3035087.
DOI: 10.1242/dev.056481.
Muscular dystrophy candidate gene FRG1 is critical for muscle development.
Hanel M, Wuebbles R, Jones P
Dev Dyn. 2008; 238(6):1502-12.
PMID: 19097195
PMC: 2964887.
DOI: 10.1002/dvdy.21830.
A comparative analysis of frog early development.
Del Pino E, Venegas-Ferrin M, Romero-Carvajal A, Montenegro-Larrea P, Saenz-Ponce N, Moya I
Proc Natl Acad Sci U S A. 2007; 104(29):11882-8.
PMID: 17606898
PMC: 1924569.
DOI: 10.1073/pnas.0705092104.
Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish.
Devoto S, Stoiber W, Hammond C, Steinbacher P, Haslett J, Barresi M
Evol Dev. 2006; 8(1):101-10.
PMID: 16409387
PMC: 3360970.
DOI: 10.1111/j.1525-142X.2006.05079.x.
The RNA-binding protein fragile X-related 1 regulates somite formation in Xenopus laevis.
Huot M, Bisson N, Davidovic L, Mazroui R, Labelle Y, Moss T
Mol Biol Cell. 2005; 16(9):4350-61.
PMID: 16000371
PMC: 1196343.
DOI: 10.1091/mbc.e05-04-0304.
The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field.
Hinkle L, McCaig C, Robinson K
J Physiol. 1981; 314:121-35.
PMID: 7310685
PMC: 1249421.
DOI: 10.1113/jphysiol.1981.sp013695.
Voltage- and stage-dependent uncoupling of Rohon-Beard neurones during embryonic development of Xenopus tadpoles.
Spitzer N
J Physiol. 1982; 330:145-62.
PMID: 7175739
PMC: 1225291.
DOI: 10.1113/jphysiol.1982.sp014334.
Developmental changes in the distribution of acetylcholine receptors in the myotomes of Xenopus laevis.
Chow I, Cohen M
J Physiol. 1983; 339:553-71.
PMID: 6887034
PMC: 1199178.
DOI: 10.1113/jphysiol.1983.sp014733.
On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation.
Burgess A
J Anat. 1983; 136(Pt 4):829-35.
PMID: 6885630
PMC: 1171964.
Self-generated electrical currents through Xenopus neurulae.
Robinson K, Stump R
J Physiol. 1984; 352:339-52.
PMID: 6747892
PMC: 1193215.
DOI: 10.1113/jphysiol.1984.sp015295.
Freeze-fracture and electrophysiological studies of newly developed acetylcholine receptors in Xenopus embryonic muscle cells.
Bridgman P, Nakajima S, Greenberg A, Nakajima Y
J Cell Biol. 1984; 98(6):2160-73.
PMID: 6725410
PMC: 2113044.
DOI: 10.1083/jcb.98.6.2160.