Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O
BMC Biol. 2022; 20(1):290.
PMID: 36575413
PMC: 9795633.
DOI: 10.1186/s12915-022-01477-y.
Trachman 3rd R, Passalacqua L, Ferre-DAmare A
J Biol Chem. 2022; 298(6):101934.
PMID: 35427649
PMC: 9142559.
DOI: 10.1016/j.jbc.2022.101934.
Yamanashi Y, Shimamura Y, Sasahara H, Komuro M, Sasaki K, Morimitsu Y
Microorganisms. 2022; 10(3).
PMID: 35336149
PMC: 8948643.
DOI: 10.3390/microorganisms10030574.
Joyce L, Manzer H, da C Mendonca J, Villarreal R, Nagao P, Doran K
PLoS Biol. 2022; 20(2):e3001555.
PMID: 35180210
PMC: 8893666.
DOI: 10.1371/journal.pbio.3001555.
Jeong H, Kim J
RNA. 2021; 27(11):1330-1338.
PMID: 34315814
PMC: 8522699.
DOI: 10.1261/rna.078863.121.
Phospholipid translocation captured in a bifunctional membrane protein MprF.
Song D, Jiao H, Liu Z
Nat Commun. 2021; 12(1):2927.
PMID: 34006869
PMC: 8131360.
DOI: 10.1038/s41467-021-23248-z.
Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances.
Fields R, Roy H
RNA Biol. 2017; 15(4-5):480-491.
PMID: 28816600
PMC: 6103681.
DOI: 10.1080/15476286.2017.1356980.
Cameo appearances of aminoacyl-tRNA in natural product biosynthesis.
Ulrich E, van der Donk W
Curr Opin Chem Biol. 2016; 35:29-36.
PMID: 27599269
PMC: 5161580.
DOI: 10.1016/j.cbpa.2016.08.018.
Lantibiotic resistance.
Draper L, Cotter P, Hill C, Ross R
Microbiol Mol Biol Rev. 2015; 79(2):171-91.
PMID: 25787977
PMC: 4394878.
DOI: 10.1128/MMBR.00051-14.
tRNA as an active chemical scaffold for diverse chemical transformations.
Francklyn C, Minajigi A
FEBS Lett. 2009; 584(2):366-75.
PMID: 19925795
PMC: 3241936.
DOI: 10.1016/j.febslet.2009.11.045.
The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion.
Ernst C, Staubitz P, Mishra N, Yang S, Hornig G, Kalbacher H
PLoS Pathog. 2009; 5(11):e1000660.
PMID: 19915718
PMC: 2774229.
DOI: 10.1371/journal.ppat.1000660.
Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol.
Roy H
IUBMB Life. 2009; 61(10):940-53.
PMID: 19787708
PMC: 2757517.
DOI: 10.1002/iub.240.
Broad range amino acid specificity of RNA-dependent lipid remodeling by multiple peptide resistance factors.
Roy H, Ibba M
J Biol Chem. 2009; 284(43):29677-83.
PMID: 19734140
PMC: 2785599.
DOI: 10.1074/jbc.M109.046367.
Aminoacyl-tRNAs, the bacterial cell envelope, and antibiotics.
RajBhandary U, Soll D
Proc Natl Acad Sci U S A. 2008; 105(14):5285-6.
PMID: 18385375
PMC: 2291102.
DOI: 10.1073/pnas.0801193105.
Monitoring Lys-tRNA(Lys) phosphatidylglycerol transferase activity.
Roy H, Ibba M
Methods. 2008; 44(2):164-9.
PMID: 18241797
PMC: 2271063.
DOI: 10.1016/j.ymeth.2007.09.002.
Metabolism of Phosphatidylglycerol and Lysyl Phosphatidylglycerol in Staphylococcus aureus.
Gould R, Lennarz W
J Bacteriol. 1970; 104(3):1135-44.
PMID: 16559086
PMC: 248270.
DOI: 10.1128/jb.104.3.1135-1144.1970.
Fatty acid composition of the complex lipids of Staphylococcus aureus during the formation of the membrane-bound electron transport system.
White D, Frerman F
J Bacteriol. 1968; 95(6):2198-209.
PMID: 5669897
PMC: 315154.
DOI: 10.1128/jb.95.6.2198-2209.1968.
The chemical synthesis of glucosaminylphosphatidylglycerol. Comparison with a new phospholipid isolated from Bacillus megaterium.
Gurr M, Bonsen P, Kamp J, Van Deenen L
Biochem J. 1968; 108(2):211-9.
PMID: 4969864
PMC: 1198795.
DOI: 10.1042/bj1080211.
Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus.
White D, Frerman F
J Bacteriol. 1967; 94(6):1854-67.
PMID: 4965365
PMC: 276914.
DOI: 10.1128/jb.94.6.1854-1867.1967.
Effect of streptomycin on lipid composition with particular reference to cyclic depsipeptide biosynthesis in Serratia marcescens and other micro-organisms.
Bermingham M, Deol B, STILL J
Biochem J. 1970; 119(5):861-9.
PMID: 4923921
PMC: 1179486.
DOI: 10.1042/bj1190861.