Fan L, Wang H, Kassab G, Lee L
WIREs Mech Dis. 2024; 16(3):e1642.
PMID: 38316634
PMC: 11081852.
DOI: 10.1002/wsbm.1642.
Yuge S, Nishiyama K, Arima Y, Hanada Y, Oguri-Nakamura E, Hanada S
Nat Commun. 2022; 13(1):2594.
PMID: 35551172
PMC: 9098626.
DOI: 10.1038/s41467-022-30197-8.
Shang M, Kwon T, Hamel J, Lim C, Khoo B, Han J
Sci Rep. 2021; 11(1):162.
PMID: 33420324
PMC: 7794228.
DOI: 10.1038/s41598-020-80576-8.
Hughes A, Parker K
Proc Inst Mech Eng H. 2020; 234(11):1288-1299.
PMID: 32367773
PMC: 7705641.
DOI: 10.1177/0954411920917557.
Magder S
Crit Care. 2018; 22(1):257.
PMID: 30305136
PMC: 6180453.
DOI: 10.1186/s13054-018-2171-1.
Microstructural constitutive model of active coronary media.
Chen H, Luo T, Zhao X, Lu X, Huo Y, Kassab G
Biomaterials. 2013; 34(31):7575-83.
PMID: 23859656
PMC: 4012690.
DOI: 10.1016/j.biomaterials.2013.06.035.
The layered structure of coronary adventitia under mechanical load.
Chen H, Liu Y, Slipchenko M, Zhao X, Cheng J, Kassab G
Biophys J. 2012; 101(11):2555-62.
PMID: 22261042
PMC: 3297804.
DOI: 10.1016/j.bpj.2011.10.043.
A Micromechanics Finite-Strain Constitutive Model of Fibrous Tissue.
Chen H, Liu Y, Zhao X, Lanir Y, Kassab G
J Mech Phys Solids. 2011; 59(9):1823-1837.
PMID: 21927506
PMC: 3171755.
DOI: 10.1016/j.jmps.2011.05.012.
Constitutive modeling of coronary arterial media--comparison of three model classes.
Hollander Y, Durban D, Lu X, Kassab G, Lanir Y
J Biomech Eng. 2011; 133(6):061008.
PMID: 21744928
PMC: 3256990.
DOI: 10.1115/1.4004249.
Experimentally validated microstructural 3D constitutive model of coronary arterial media.
Hollander Y, Durban D, Lu X, Kassab G, Lanir Y
J Biomech Eng. 2011; 133(3):031007.
PMID: 21303183
PMC: 3249663.
DOI: 10.1115/1.4003324.
Biomechanics of the cardiovascular system: the aorta as an illustratory example.
Kassab G
J R Soc Interface. 2006; 3(11):719-40.
PMID: 17015300
PMC: 1885359.
DOI: 10.1098/rsif.2006.0138.
Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy.
Zoumi A, Lu X, Kassab G, Tromberg B
Biophys J. 2004; 87(4):2778-86.
PMID: 15454469
PMC: 1304696.
DOI: 10.1529/biophysj.104.042887.
Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation.
Lee J, Schmid-Schonbein G
Ann Biomed Eng. 1995; 23(3):226-46.
PMID: 7631979
DOI: 10.1007/BF02584425.
Correlation of the directly observed responses of mesenteric vessles of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves.
Furness J, Marshall J
J Physiol. 1974; 239(1):75-88.
PMID: 4851199
PMC: 1330938.
DOI: 10.1113/jphysiol.1974.sp010556.
The interaction between noradrenaline activation and distension activation of the rabbit ear artery.
Speden R, WARREN D
J Physiol. 1986; 375:283-302.
PMID: 3795060
PMC: 1182759.
DOI: 10.1113/jphysiol.1986.sp016117.
Effects of aortic pressure and vasoactive agents on the vascular resistance of the vasa vasorum in canine isolated thoracic aorta.
Ohhira A, Ohhashi T
J Physiol. 1992; 453:233-45.
PMID: 1464829
PMC: 1175555.
DOI: 10.1113/jphysiol.1992.sp019226.