Gehlert S, Weinisch P, Romisch-Margl W, Jaspers R, Artati A, Adamski J
Metabolites. 2022; 12(5).
PMID: 35629949
PMC: 9142957.
DOI: 10.3390/metabo12050445.
Hazlewood C
Cardiovasc Dis. 1975; 2(1):83-104.
PMID: 15215951
PMC: 287531.
Rushbrook J, Huang J, Weiss C, Yao T, Becker E
J Muscle Res Cell Motil. 1998; 19(2):157-68.
PMID: 9536442
DOI: 10.1023/a:1005360612542.
Hillgartner F, Williams A, Flanders J, Morin D, Hansen R
Biochem J. 1981; 196(2):591-601.
PMID: 7316997
PMC: 1163033.
DOI: 10.1042/bj1960591.
Price K, Littler W, Cummins P
Biochem J. 1980; 191(2):571-80.
PMID: 7236212
PMC: 1162249.
DOI: 10.1042/bj1910571.
Myofibrillar protein turnover. Synthesis of protein-bound 3-methylhistidine, actin, myosin heavy chain and aldolase in rat skeletal muscle in the fed and starved states.
Bates P, Grimble G, Sparrow M, Millward D
Biochem J. 1983; 214(2):593-605.
PMID: 6615482
PMC: 1152286.
DOI: 10.1042/bj2140593.
Endogenous 3-methylhistidine excretion in healthy women and men with reference to muscle protein metabolism.
Neuhauser M, Bassler K
Z Ernahrungswiss. 1984; 23(3):171-80.
PMID: 6506809
DOI: 10.1007/BF02021471.
Distribution and properties of myosin isozymes in developing avian and mammalian skeletal muscle fibers.
GAUTHIER G, LOWEY S, Benfield P, Hobbs A
J Cell Biol. 1982; 92(2):471-84.
PMID: 6174531
PMC: 2112058.
DOI: 10.1083/jcb.92.2.471.
Electrophoretic study of the small subunits of the myosin molecule.
Perrie W, PERRY S, Stone D
Biochem J. 1969; 113(3):28P-29P.
PMID: 5807193
PMC: 1184717.
DOI: 10.1042/bj1130028pb.
Occurrence and formation of the N epsilon-methyl-lysines in myosin and the myofibrillar proteins.
Hardy M, Harris C, PERRY S, Stone D
Biochem J. 1970; 120(3):653-60.
PMID: 5499978
PMC: 1179647.
DOI: 10.1042/bj1200653.
An alternative route for biosynthesis of methylhistamine: in vitro and in vivo formation through decarboxylation of L-3-methylhistidine.
Schwartz J, Caillens H, Rose C
Experientia. 1972; 28(8):904-5.
PMID: 5076315
DOI: 10.1007/BF01924935.
Relatedness among contractile and membrane proteins: evidence for evolution from common ancestral genes.
WELTMAN J, Dowben R
Proc Natl Acad Sci U S A. 1973; 70(11):3230-4.
PMID: 4274132
PMC: 427206.
DOI: 10.1073/pnas.70.11.3230.
Early biochemical consequences of denervation in fast and slow skeletal muscles and their relationship to neural control over muscle differentiation.
Margreth A, Salviati G, Di Mauro S, Turati G
Biochem J. 1972; 126(5):1099-110.
PMID: 4262959
PMC: 1178532.
DOI: 10.1042/bj1261099.
Biochemical characteristics of slow skeletal muscle in work-induced hypertrophy.
Margreth A, Salviati G
Biochem J. 1971; 124(3):669-71.
PMID: 4257487
PMC: 1177238.
DOI: 10.1042/bj1240669.
Biological activity and the 3-methylhistidine content of actin and myosin.
Johnson P, PERRY S
Biochem J. 1970; 119(2):293-8.
PMID: 4249861
PMC: 1179351.
DOI: 10.1042/bj1190293.
Distribution and biological role of 3-methyl-histidine in actin and myosin.
Johnson P, Lobley G, PERRY S
Biochem J. 1969; 114(2):34P.
PMID: 4241475
PMC: 1184894.
DOI: 10.1042/bj1140034pa.
Some properties of embryonic myosin.
SRETER F, Holtzer S, Gergely J, Holtzer H
J Cell Biol. 1972; 55(3):586-94.
PMID: 4120861
PMC: 2108824.
DOI: 10.1083/jcb.55.3.586.
Complexity of myosin species in the avian posterior latissimus dorsi muscle.
Rushbrook J, Weiss C, Yao T, Lin J
J Muscle Res Cell Motil. 1988; 9(6):552-62.
PMID: 3209693
DOI: 10.1007/BF01738760.
3-Methylhistidine excretion as an index of myofibrillar protein catabolism in neuromuscular disease.
McKeran R, Halliday D, Purkiss P, Royston P
J Neurol Neurosurg Psychiatry. 1979; 42(6):536-41.
PMID: 469561
PMC: 490258.
DOI: 10.1136/jnnp.42.6.536.
Comparison of adult, embryonic, and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and peptide mapping.
Rushbrook J, Stracher A
Proc Natl Acad Sci U S A. 1979; 76(9):4331-4.
PMID: 291968
PMC: 411568.
DOI: 10.1073/pnas.76.9.4331.