» Articles » PMID: 4939758

Growth Rate of Escherichia Coli at Elevated Temperatures: Limitation by Methionine

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1971 Aug 1
PMID 4939758
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

When Escherichia coli growing in minimal medium is shifted from 37 C to any temperature in the range 40 to 45 C, the growth rate immediately assumes a new, lower value, characteristic of that temperature. The decrease is shown to be due, in several strains, to decreased activity of the first enzyme of the methionine pathway, homoserine trans-succinylase, which thus appears to be more heat-sensitive than any other essential enzyme in the cell. This sensitivity does not involve progressive denaturation of the enzyme; rather, the response to a shift of temperature, in either direction, is immediate and reversible.

Citing Articles

Multivariate modular metabolic engineering for enhanced L-methionine biosynthesis in Escherichia coli.

Li Z, Liu Q, Sun J, Sun J, Li M, Zhang Y Biotechnol Biofuels Bioprod. 2023; 16(1):101.

PMID: 37312226 PMC: 10265765. DOI: 10.1186/s13068-023-02347-7.


MetA is a "thermal fuse" that inhibits growth and protects Escherichia coli at elevated temperatures.

Schink S, Gough Z, Biselli E, Huiman M, Chang Y, Basan M Cell Rep. 2022; 40(9):111290.

PMID: 36044860 PMC: 10477958. DOI: 10.1016/j.celrep.2022.111290.


Heat-responsive and time-resolved transcriptome and metabolome analyses of Escherichia coli uncover thermo-tolerant mechanisms.

Kim S, Kim Y, Suh D, Lee C, Yoo S, Lee S Sci Rep. 2020; 10(1):17715.

PMID: 33077799 PMC: 7572479. DOI: 10.1038/s41598-020-74606-8.


Enhancing Protein Stability with Genetically Encoded Noncanonical Amino Acids.

Li J, Liu T, Wang Y, Mehta A, Schultz P J Am Chem Soc. 2018; 140(47):15997-16000.

PMID: 30433771 PMC: 6426444. DOI: 10.1021/jacs.8b07157.


Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

Selby K, Mascher G, Somervuo P, Lindstrom M, Korkeala H PLoS One. 2017; 12(5):e0176944.

PMID: 28464023 PMC: 5413062. DOI: 10.1371/journal.pone.0176944.


References
1.
Rowbury R, Woods D . The regulation of cystathionine formation in Escherichia coli. J Gen Microbiol. 1966; 42(1):155-63. DOI: 10.1099/00221287-42-1-155. View

2.
Ron E, Davis B . Specific stimulation of RNA synthesis by methionine in several strains of Escherichia coli. J Mol Biol. 1966; 21(1):13-27. DOI: 10.1016/0022-2836(66)90076-3. View

3.
Schlesinger S . Inhibition of growth of Escherichia coli and of homoserine O-transsuccinylase by alpha-methylmethionine. J Bacteriol. 1967; 94(2):327-32. PMC: 315044. DOI: 10.1128/jb.94.2.327-332.1967. View

4.
Ron E, Shani M . Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J Bacteriol. 1971; 107(2):397-400. PMC: 246938. DOI: 10.1128/jb.107.2.397-400.1971. View

5.
Stent G, Brenner S . A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961; 47:2005-14. PMC: 223254. DOI: 10.1073/pnas.47.12.2005. View