Hossain Z, Valicherla G, Gupta A, Syed A, Riyazuddin M, Chandra S
Sci Rep. 2018; 8(1):8715.
PMID: 29880906
PMC: 5992141.
DOI: 10.1038/s41598-018-27018-8.
Fanelli C, Calderone S, EPIFANO L, De Vincenzo A, Modarelli F, Pampanelli S
J Clin Invest. 1993; 92(4):1617-22.
PMID: 8408616
PMC: 288319.
DOI: 10.1172/JCI116746.
Randle P, Priestman D, Mistry S, Halsall A
Diabetologia. 1994; 37 Suppl 2:S155-61.
PMID: 7821731
DOI: 10.1007/BF00400839.
Ferrannini E, Barrett E, Bevilacqua S, DeFronzo R
J Clin Invest. 1983; 72(5):1737-47.
PMID: 6138367
PMC: 370462.
DOI: 10.1172/JCI111133.
Weber G, LEA M, STAMM N
Lipids. 1969; 4(5):388-96.
PMID: 5823720
DOI: 10.1007/BF02531011.
Carbohydrate metabolism of the perfused rat liver.
Ross B, HEMS R, Freedland R, KREBS H
Biochem J. 1967; 105(2):869-75.
PMID: 5584023
PMC: 1198388.
DOI: 10.1042/bj1050869.
Liver-L-alanine-glyoxylate and L-serine-pyruvate aminotransferase activities: an apparent association with gluconeogenesis.
ROWSELL E, Snell K, CARNIE J
Biochem J. 1969; 115(5):1071-3.
PMID: 5360676
PMC: 1185249.
DOI: 10.1042/bj1151071.
Interrelations between hepatic fatty acid oxidation and gluconeogenesis: a possible regulatory role of carnitine palmityltransferase.
DeLisle G, Fritz I
Proc Natl Acad Sci U S A. 1967; 58(2):790-7.
PMID: 5233475
PMC: 335702.
DOI: 10.1073/pnas.58.2.790.
Induction and suppression of the key enzymes of glycolysis and gluconeogenesis in isolated perfused rat liver in response to glucose, fructose and lactate.
Wimhurst J, Manchester K
Biochem J. 1973; 134(1):143-56.
PMID: 4353083
PMC: 1177795.
DOI: 10.1042/bj1340143.
Hepatic redox state and gluconeogenesis from lactate in vivo in the rat.
Hawkins R, Houghton C, Williamson D
Biochem J. 1973; 132(1):19-25.
PMID: 4353000
PMC: 1177555.
DOI: 10.1042/bj1320019.
alpha-Ketoacid dehydrogenase complexes and respiratory fuel utilisation in diabetes.
Randle P
Diabetologia. 1985; 28(8):479-84.
PMID: 4054446
DOI: 10.1007/BF00281981.
The mechanism of the hormonal activation of respiration in isolated hepatocytes and its importance in the regulation of gluconeogenesis.
QUINLAN P, Halestrap A
Biochem J. 1986; 236(3):789-800.
PMID: 3024626
PMC: 1146912.
DOI: 10.1042/bj2360789.
Modulation of hepatic glucose production by non-esterified fatty acids in type 2 (non-insulin-dependent) diabetes mellitus.
Saloranta C, Ekstrand A, Taskinen M, Groop L
Diabetologia. 1991; 34(6):409-15.
PMID: 1884899
DOI: 10.1007/BF00403179.
Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation in humans by stimulating lipolysis.
Fanelli C, De Feo P, Porcellati F, Perriello G, Torlone E, Santeusanio F
J Clin Invest. 1992; 89(6):2005-13.
PMID: 1602007
PMC: 295905.
DOI: 10.1172/JCI115809.
Use of endogenous triglycerides to support gluconeogenesis in the perfused isolated rat liver.
Parrilla R, Williamson J
Pflugers Arch. 1976; 366(2-3):211-6.
PMID: 1033522
DOI: 10.1007/BF00585880.
I.V. glucose tolerance test: correlation between FFA, glucose and IRI in normal, obese and diabetic subjects.
PRANDO R, Cordera R, De Micheli A, Maiello M, Odetti P, Viviani G
Acta Diabetol Lat. 1978; 15(5-6):259-72.
PMID: 749494
DOI: 10.1007/BF02590749.
Distinctive effects of glucagon on gluconeogenesis and ketogenesis in hepatocytes isolated from normal and biotin-deficient rats.
Siess E, Brocks D, Wieland O
Biochem J. 1978; 172(3):517-21.
PMID: 687357
PMC: 1185726.
DOI: 10.1042/bj1720517.
Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate.
Siess E, Brocks D, Lattke H, Wieland O
Biochem J. 1977; 166(2):225-35.
PMID: 199159
PMC: 1164999.
DOI: 10.1042/bj1660225.