Grausgruber A, Revilla-I-Domingo R
Elife. 2023; 12.
PMID: 37530753
PMC: 10396335.
DOI: 10.7554/eLife.90447.
Meyer A, Ku C, Hatleberg W, Telmer C, Hinman V
Elife. 2023; 12.
PMID: 37470227
PMC: 10396339.
DOI: 10.7554/eLife.80090.
Spurrell M, Oulhen N, Foster S, Perillo M, Wessel G
Dev Biol. 2022; 494:13-25.
PMID: 36519720
PMC: 9870932.
DOI: 10.1016/j.ydbio.2022.11.008.
Shook D, Wen J, Rolo A, OHanlon M, Francica B, Dobbins D
Elife. 2022; 11.
PMID: 35404236
PMC: 9064293.
DOI: 10.7554/eLife.57642.
Kalargyrou A, Basche M, Hare A, West E, Smith A, Ali R
EMBO Rep. 2021; 22(11):e53732.
PMID: 34494703
PMC: 8567251.
DOI: 10.15252/embr.202153732.
Cellular bicarbonate accumulation and vesicular proton transport promote calcification in the sea urchin larva.
Hu M, Petersen I, Chang W, Blurton C, Stumpp M
Proc Biol Sci. 2020; 287(1934):20201506.
PMID: 32900308
PMC: 7542784.
DOI: 10.1098/rspb.2020.1506.
Regulation of dynamic pigment cell states at single-cell resolution.
Perillo M, Oulhen N, Foster S, Spurrell M, Calestani C, Wessel G
Elife. 2020; 9.
PMID: 32812865
PMC: 7455242.
DOI: 10.7554/eLife.60388.
Specialized Intercellular Communications via Cytonemes and Nanotubes.
Yamashita Y, Inaba M, Buszczak M
Annu Rev Cell Dev Biol. 2018; 34:59-84.
PMID: 30074816
PMC: 6404750.
DOI: 10.1146/annurev-cellbio-100617-062932.
Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo.
Sepulveda-Ramirez S, Toledo-Jacobo L, Henson J, Shuster C
Dev Biol. 2018; 437(2):140-151.
PMID: 29555242
PMC: 5973877.
DOI: 10.1016/j.ydbio.2018.03.015.
The contractility of elongated microvilli in early sea urchin embryos.
Spiegel E, Howard L, Spiegel M
Rouxs Arch Dev Biol. 2017; 199(4):228-236.
PMID: 28306108
DOI: 10.1007/BF01682082.
The insertion of mesenchyme cells into the ectoderm during differentiation in Sea urchin embryos.
Spiegel E, Spiegel M
Rouxs Arch Dev Biol. 2017; 201(6):383-388.
PMID: 28305857
DOI: 10.1007/BF00365126.
Isolation of sea urchin embryo cell surface membranes on polycationic beads.
Helmly R, Brown K
Rouxs Arch Dev Biol. 2017; 196(4):262-267.
PMID: 28305702
DOI: 10.1007/BF00376351.
Alterations in the cell surface proteins of Drosophila during morphogenesis.
Woods D, Rickoll W, Birr C, Poodry C, Fristrom J
Rouxs Arch Dev Biol. 2017; 196(6):339-346.
PMID: 28305633
DOI: 10.1007/BF00375770.
Studies on the gastrulation of amphibian embryos: Ultrastructure of the migrating cells of anurans.
Nakatsuji N
Wilehm Roux Arch Dev Biol. 2017; 180(3):229-240.
PMID: 28305525
DOI: 10.1007/BF00848577.
The origin of skeleton forming cells in the sea urchin embryo.
Urben S, Nislow C, Spiegel M
Rouxs Arch Dev Biol. 2017; 197(8):447-456.
PMID: 28305470
DOI: 10.1007/BF00385678.
Ultrastructure of collagen in sea urchin embryos.
Crise-Benson N, Carl Benson S
Wilehm Roux Arch Dev Biol. 2017; 186(1):65-70.
PMID: 28305312
DOI: 10.1007/BF00848108.
An SEM study of cellular morphology, contact, and arrangement, as related to gastrulation inXenopus laevis.
Keller R, Schoenwolf G
Wilehm Roux Arch Dev Biol. 2017; 182(2):165-186.
PMID: 28305269
DOI: 10.1007/BF00848055.
Detection of 5-hydroxytryptamine in developing sea urchin embryos.
Toneby M
Wilhelm Roux Arch Entwickl Mech Org. 2017; 172(3):258-261.
PMID: 28305248
DOI: 10.1007/BF00582078.
Functional aspects of 5-hydroxytryptamine in early embryogenesis of the sea urchinParacentrotus lividus.
Toneby M
Wilehm Roux Arch Dev Biol. 2017; 181(3):247-259.
PMID: 28305144
DOI: 10.1007/BF00848424.
Studies on the gastrulation of amphibian embryos: Cell movement during gastrulation inXenopus laevis embryos.
Nakatzuji N
Wilehm Roux Arch Dev Biol. 2017; 178(1):1-14.
PMID: 28305063
DOI: 10.1007/BF00848358.