Wu S, Li J, Jin X
Sci Rep. 2018; 8(1):3267.
PMID: 29459688
PMC: 5818499.
DOI: 10.1038/s41598-018-21580-x.
Park J, Wakabayashi K, Szalkowski C, Bhimani R
J Neurochem. 2017; 142(3):365-377.
PMID: 28498499
PMC: 6849378.
DOI: 10.1111/jnc.14069.
Ruksee N, Tongjaroenbuangam W, Casalotti S, Govitrapong P
BMC Neurosci. 2008; 9:99.
PMID: 18834549
PMC: 2567327.
DOI: 10.1186/1471-2202-9-99.
Conway E, Jarrott B
Br J Pharmacol. 1980; 71(2):473-8.
PMID: 7470758
PMC: 2044444.
DOI: 10.1111/j.1476-5381.1980.tb10960.x.
Makanjuola R, Ashcroft G
Psychopharmacology (Berl). 1982; 76(4):33-40.
PMID: 6812107
DOI: 10.1007/BF00449121.
Interactions of a neuroleptic drug (fluphenazine) with catecholamines in hippocampus.
Palmer M, Freedman R, Dunwiddie T
Psychopharmacology (Berl). 1982; 76(2):122-9.
PMID: 6805021
DOI: 10.1007/BF00435265.
Type A monoamine oxidase catalyzes the intraneuronal deamination of dopamine within nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons in the rat.
Demarest K, Moore K
J Neural Transm. 1981; 52(3):175-87.
PMID: 6796650
DOI: 10.1007/BF01249602.
Morphine differentially alters synthesis and turnover of dopamine in central neuronal systems.
Alper R, Demarest K, Moore K
J Neural Transm. 1980; 48(3):157-65.
PMID: 6772740
DOI: 10.1007/BF01243500.
Effects of morphine on dopamine metabolism in rat striatum and limbic structures in relation to the activity of dopaminergic neurones.
Moleman P, van Valkenburg C, vd Krogt J
Naunyn Schmiedebergs Arch Pharmacol. 1984; 327(3):208-13.
PMID: 6493361
DOI: 10.1007/BF00502451.
Rat climbing behavior elicited by stimulation of cerebral dopamine receptors.
Protais P, Bonnet J, Costentin J, Schwartz J
Naunyn Schmiedebergs Arch Pharmacol. 1984; 325(2):93-101.
PMID: 6425703
DOI: 10.1007/BF00506188.
Regional distribution of sultopride and sulpiride in rat brain measured by radioimmunoassay.
Mizuchi A, Kitagawa N, Miyachi Y
Psychopharmacology (Berl). 1983; 81(3):195-8.
PMID: 6417707
DOI: 10.1007/BF00427261.
3,4-dihydroxyphenylacetic acid (DOPAC) and the rat mesolimbic dopaminergic pathway: drug effects and evidence for somatodendritic mechanisms.
Beart P, Gundlach A
Br J Pharmacol. 1980; 69(2):241-7.
PMID: 6108139
PMC: 2044258.
DOI: 10.1111/j.1476-5381.1980.tb07896.x.
Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity.
Mishra R, Gardner E, Katzman R, MAKMAN M
Proc Natl Acad Sci U S A. 1974; 71(10):3883-7.
PMID: 4372596
PMC: 434289.
DOI: 10.1073/pnas.71.10.3883.
Dopamine agonist-induced stereotypic grooming and self-mutilation following striatal dopamine depletion.
Hartgraves S, Randall P
Psychopharmacology (Berl). 1986; 90(3):358-63.
PMID: 3097724
DOI: 10.1007/BF00179191.
Odor detection performance of rats following d-amphetamine treatment: a signal detection analysis.
Doty R
Psychopharmacology (Berl). 1987; 93(1):87-93.
PMID: 2819927
DOI: 10.1007/BF02439592.
Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration.
Doty R, Risser J
Psychopharmacology (Berl). 1989; 98(3):310-5.
PMID: 2568654
DOI: 10.1007/BF00451680.
Cocaine produces low dose locomotor depressant effects in mice.
George F
Psychopharmacology (Berl). 1989; 99(2):147-50.
PMID: 2508148
DOI: 10.1007/BF00442799.
Dopamine D-2 receptors inhibit D-1 stimulated cyclic AMP accumulation in striatum but not limbic forebrain.
Kelly E, Nahorski S
Naunyn Schmiedebergs Arch Pharmacol. 1987; 335(5):508-12.
PMID: 2441268
DOI: 10.1007/BF00169116.
Chronic low-dose haloperidol effects on self-stimulation rate-intensity functions.
LYNCH M, Carey R
Psychopharmacology (Berl). 1990; 102(1):122-9.
PMID: 2392500
DOI: 10.1007/BF02245756.
Cocaine produces locomotor stimulation in SS but not LS mice: relationship to dopaminergic function.
George F, Ritz M
Psychopharmacology (Berl). 1990; 101(1):18-22.
PMID: 2188275
DOI: 10.1007/BF02253711.