Dou P, Li X, Jin H, Ma B, Jin M, Xu Y
Spine Deform. 2024; 13(2):391-403.
PMID: 39499450
DOI: 10.1007/s43390-024-01000-z.
Zhang L, Zhang Q, Zhong Y, Hortobagyi T, Gu Y
Front Bioeng Biotechnol. 2024; 12:1387768.
PMID: 39040495
PMC: 11260739.
DOI: 10.3389/fbioe.2024.1387768.
Lv X, Nuertai Y, Wang Q, Zhang D, Hu X, Liu J
Neurospine. 2024; 21(1):231-243.
PMID: 38317554
PMC: 10992630.
DOI: 10.14245/ns.2347118.559.
Yang C, Zeng Z, Yan H, Wu J, Lv X, Zhang D
Front Endocrinol (Lausanne). 2023; 14:1131880.
PMID: 37033224
PMC: 10076869.
DOI: 10.3389/fendo.2023.1131880.
Xue F, Deng H, Chen Z, Yang H, Li Y, Yuan S
Front Bioeng Biotechnol. 2023; 11:1095587.
PMID: 36714008
PMC: 9880201.
DOI: 10.3389/fbioe.2023.1095587.
The Effect of Concave-Side Intertransverse Ligament Laxity on the Stress of AIS Lumbar Spine Based on Finite Element Method.
Zhang L, Zhang Q, Zhang Y, Arthur M, Teo E, Biro I
Bioengineering (Basel). 2022; 9(12).
PMID: 36550930
PMC: 9774201.
DOI: 10.3390/bioengineering9120724.
Finite analysis of stability between modified articular fusion technique, posterior lumbar interbody fusion and posteriorlateral lumbar fusion.
Han X, Chen X, Li K, Li Z, Li S
BMC Musculoskelet Disord. 2021; 22(1):1015.
PMID: 34863121
PMC: 8645152.
DOI: 10.1186/s12891-021-04899-x.
Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study.
Ling Q, Zhang H, He E
Biomed Res Int. 2021; 2021:5542595.
PMID: 34055981
PMC: 8147546.
DOI: 10.1155/2021/5542595.
Biomechanical properties of a novel nonfusion artificial vertebral body for anterior lumbar vertebra resection and internal fixation.
Liu J, He X, Niu B, Yang Y, Gao Y, Xiu J
Sci Rep. 2021; 11(1):2632.
PMID: 33514823
PMC: 7846776.
DOI: 10.1038/s41598-021-82086-7.
Topping-off technique prevents aggravation of degeneration of adjacent segment fusion revealed by retrospective and finite element biomechanical analysis.
Zhu Z, Liu C, Wang K, Zhou J, Wang J, Zhu Y
J Orthop Surg Res. 2015; 10:10.
PMID: 25627068
PMC: 4324860.
DOI: 10.1186/s13018-014-0142-z.
Novel, fast and efficient image-based 3D modeling method and its application in fracture risk evaluation.
Li D, Xiao Z, Wang G, Zhao G
Exp Ther Med. 2014; 7(6):1583-1590.
PMID: 24926348
PMC: 4043561.
DOI: 10.3892/etm.2014.1645.
Musculoskeletal modelling of muscle activation and applied external forces for the correction of scoliosis.
Curtin M, Lowery M
J Neuroeng Rehabil. 2014; 11:52.
PMID: 24708652
PMC: 3986451.
DOI: 10.1186/1743-0003-11-52.
Transmission of force in the lumbosacral spine during backward falls.
Van Toen C, Sran M, Robinovitch S, Cripton P
Spine (Phila Pa 1976). 2011; 37(9):E519-27.
PMID: 22076645
PMC: 3438202.
DOI: 10.1097/BRS.0b013e31823ecae0.
Finite element analysis of the screw in percutaneous axial lumbosacral interbody fusion.
Xu H, Yang X, Wu T, Wang H, Chen X, Wang L
Orthop Surg. 2011; 2(3):207-10.
PMID: 22009950
PMC: 6583399.
DOI: 10.1111/j.1757-7861.2010.00088.x.
Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method.
Perie D, Sales de Gauzy J, Hobatho M
Med Biol Eng Comput. 2002; 40(3):296-301.
PMID: 12195976
DOI: 10.1007/BF02344211.
Idiopathic scoliosis: biomechanics and biology.
Millner P, Dickson R
Eur Spine J. 1996; 5(6):362-73.
PMID: 8988378
DOI: 10.1007/BF00301963.
Analysis of human torso motion with muscle actuators.
Katbab A
Ann Biomed Eng. 1989; 17(1):75-91.
PMID: 2919813
DOI: 10.1007/BF02364274.