Del V Alonso S, Gonzalez Flecha F
Biophys Rev. 2023; 15(4):431-438.
PMID: 37681102
PMC: 10480372.
DOI: 10.1007/s12551-023-01114-0.
Kim A, DiFranco M, Vergara J
Biophys J. 1996; 71(2):924-31.
PMID: 8842232
PMC: 1233550.
DOI: 10.1016/S0006-3495(96)79296-2.
Dimitrov G, Lateva Z, Dimitrova N
Med Biol Eng Comput. 1994; 32(4):432-6.
PMID: 7967810
DOI: 10.1007/BF02524697.
Kotsias B, Venosa R, Horowicz P
Pflugers Arch. 1984; 400(3):262-8.
PMID: 6610169
DOI: 10.1007/BF00581557.
Elizalde A, Huerta M, Stefani E
J Physiol. 1983; 340:513-24.
PMID: 6604153
PMC: 1199224.
DOI: 10.1113/jphysiol.1983.sp014777.
The effect of cellular energy reserves and internal calcium ions on the potassium conductance in skeletal muscle of the frog.
Fink R, Hase S, LUTTGAU H, Wettwer E
J Physiol. 1983; 336:211-28.
PMID: 6410052
PMC: 1198966.
DOI: 10.1113/jphysiol.1983.sp014577.
Hydrostatic pressure modifies the action of octanol and atropine on frog endplate conductance.
Ashford M, MacDonald A, Wann K
Br J Pharmacol. 1984; 83(2):477-84.
PMID: 6333262
PMC: 1987118.
DOI: 10.1111/j.1476-5381.1984.tb16510.x.
Extracellular chloride replacement by isethionate induces abnormal spontaneous release of transmitter at the frog neuromuscular junction.
Ashford M, Wann K
Br J Pharmacol. 1983; 79(1):201-9.
PMID: 6135475
PMC: 2044824.
DOI: 10.1111/j.1476-5381.1983.tb10513.x.
The effects of hydrostatic pressure on the spontaneous release of transmitter at the frog neuromuscular junction.
Ashford M, MacDonald A, Wann K
J Physiol. 1982; 333:531-43.
PMID: 6133947
PMC: 1197262.
DOI: 10.1113/jphysiol.1982.sp014467.
Early stage of re-innervation of frog slow muscle fibres.
Stefani E, Schmidt H
Pflugers Arch. 1972; 336(3):271-5.
PMID: 4538923
DOI: 10.1007/BF00590051.
An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres.
Fink R, LUTTGAU H
J Physiol. 1976; 263(2):215-38.
PMID: 1087932
PMC: 1307698.
DOI: 10.1113/jphysiol.1976.sp011629.
Re-innervation of twitch and slow muscle fibres of the frog after crushing the motor nerves.
Schmidt H, Stefani E
J Physiol. 1976; 258(1):99-123.
PMID: 1084925
PMC: 1308962.
DOI: 10.1113/jphysiol.1976.sp011409.
Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle.
Jaimovich E, Venosa R, Shrager P, Horowicz P
J Gen Physiol. 1976; 67(4):399-416.
PMID: 1083895
PMC: 2214919.
DOI: 10.1085/jgp.67.4.399.
Potassium and calcium conductance in slow muscle fibres of the toad.
Stefani E, Uchitel O
J Physiol. 1976; 255(2):435-48.
PMID: 815545
PMC: 1309256.
DOI: 10.1113/jphysiol.1976.sp011288.
Inward calcium current in twitch muscle fibres of the frog.
Sanchez J, Stefani E
J Physiol. 1978; 283:197-209.
PMID: 309941
PMC: 1282773.
DOI: 10.1113/jphysiol.1978.sp012496.
The influence of caffeine on the rate of decay of end-plate currents in frog skeletal muscle [proceedings].
Terrar D
Br J Pharmacol. 1978; 62(3):437P.
PMID: 305801
PMC: 1668239.
Effect of nerve length and temperature on the induction of action potentials in denervated slow muscle fibres of the frog.
Schalow G, Schmidt H
Pflugers Arch. 1977; 372(1):17-22.
PMID: 304209
DOI: 10.1007/BF00582201.
Action potentials in slow muscle fibres of the frog during regeneration of motor nerves.
Schmidt H, Stefani E
J Physiol. 1977; 270(2):507-17.
PMID: 302858
PMC: 1353526.
DOI: 10.1113/jphysiol.1977.sp011965.
The action of D600 on frog skeletal muscle: facilitation of excitation-contraction coupling.
Pflugers Arch. 1977; 369(3):259-67.
PMID: 302434
DOI: 10.1007/BF00582193.