Liu D, Zhang H, Tan H, Jin Y, Zhang C, Bo Z
Microbiol Spectr. 2023; 11(3):e0520922.
PMID: 37212663
PMC: 10269479.
DOI: 10.1128/spectrum.05209-22.
Huang L, Liu M, Zhu D, Xie L, Huang M, Xiang C
Front Microbiol. 2021; 12:634895.
PMID: 33746928
PMC: 7965970.
DOI: 10.3389/fmicb.2021.634895.
Mora M, Mell J, Ehrlich G, Ehrlich R, Redfield R
iScience. 2021; 24(1):102007.
PMID: 33490915
PMC: 7811141.
DOI: 10.1016/j.isci.2020.102007.
Mell J, Redfield R
J Bacteriol. 2014; 196(8):1471-83.
PMID: 24488316
PMC: 3993363.
DOI: 10.1128/JB.01293-13.
Mell J, Hall I, Redfield R
Nucleic Acids Res. 2012; 40(17):8536-49.
PMID: 22753031
PMC: 3458573.
DOI: 10.1093/nar/gks640.
Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter.
Gilbreath J, Cody W, Merrell D, Hendrixson D
Microbiol Mol Biol Rev. 2011; 75(1):84-132.
PMID: 21372321
PMC: 3063351.
DOI: 10.1128/MMBR.00035-10.
Coevolution of DNA uptake sequences and bacterial proteomes.
Findlay W, Redfield R
Genome Biol Evol. 2010; 1:45-55.
PMID: 20333176
PMC: 2817400.
DOI: 10.1093/gbe/evp005.
An intragenic distribution bias of DNA uptake sequences in Pasteurellaceae and Neisseriae.
van Passel M
Biol Direct. 2008; 3:12.
PMID: 18371225
PMC: 2346458.
DOI: 10.1186/1745-6150-3-12.
The impact of the neisserial DNA uptake sequences on genome evolution and stability.
Treangen T, Ambur O, Tonjum T, Rocha E
Genome Biol. 2008; 9(3):R60.
PMID: 18366792
PMC: 2397512.
DOI: 10.1186/gb-2008-9-3-r60.
Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.
Bakkali M
PLoS One. 2007; 2(8):e741.
PMID: 17710141
PMC: 1939737.
DOI: 10.1371/journal.pone.0000741.
Evolution of competence and DNA uptake specificity in the Pasteurellaceae.
Redfield R, Findlay W, Bosse J, Kroll J, Cameron A, Nash J
BMC Evol Biol. 2006; 6:82.
PMID: 17038178
PMC: 1626085.
DOI: 10.1186/1471-2148-6-82.
Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae.
Bakkali M, Chen T, Lee H, Redfield R
Proc Natl Acad Sci U S A. 2004; 101(13):4513-8.
PMID: 15070749
PMC: 384778.
DOI: 10.1073/pnas.0306366101.
Biased distribution of DNA uptake sequences towards genome maintenance genes.
Davidsen T, Rodland E, Lagesen K, Seeberg E, Rognes T, Tonjum T
Nucleic Acids Res. 2004; 32(3):1050-8.
PMID: 14960717
PMC: 373393.
DOI: 10.1093/nar/gkh255.
Evidence for a conjugation-like mechanism of DNA transfer in Helicobacter pylori.
Kuipers E, Israel D, Kusters J, Blaser M
J Bacteriol. 1998; 180(11):2901-5.
PMID: 9603879
PMC: 107256.
DOI: 10.1128/JB.180.11.2901-2905.1998.
The complete nucleotide sequence of bacteriophage HP1 DNA.
Esposito D, Fitzmaurice W, Benjamin R, Goodman S, Waldman A, SCOCCA J
Nucleic Acids Res. 1996; 24(12):2360-8.
PMID: 8710508
PMC: 145952.
DOI: 10.1093/nar/24.12.2360.
Interactions of competent Streptococcus sanguis (Wicky) cells with native or denatured, homologous or heterologous deoxyribonucleic acids.
Ranhand J
J Bacteriol. 1980; 142(2):568-80.
PMID: 6991480
PMC: 294025.
DOI: 10.1128/jb.142.2.568-580.1980.
Generation and release of DNA-binding vesicles by Haemophilus influenzae during induction and loss of competence.
Deich R, Hoyer L
J Bacteriol. 1982; 152(2):855-64.
PMID: 6982266
PMC: 221540.
DOI: 10.1128/jb.152.2.855-864.1982.
DNA-binding vesicles released from the surface of a competence-deficient mutant of Haemophilus influenzae.
Concino M, GOODGAL S
J Bacteriol. 1982; 152(1):441-50.
PMID: 6981641
PMC: 221438.
DOI: 10.1128/jb.152.1.441-450.1982.
Transformation of Haemophilus influenzae by plasmid RSF0885.
NOTANI N, Setlow J, McCarthy D, Clayton N
J Bacteriol. 1981; 148(3):812-6.
PMID: 6975775
PMC: 216279.
DOI: 10.1128/jb.148.3.812-816.1981.
Haemophilus influenzae polypeptides involved in deoxyribonucleic acid uptake detected by cellular surface protein iodination.
Concino M, GOODGAL S
J Bacteriol. 1981; 148(1):220-31.
PMID: 6974728
PMC: 216184.
DOI: 10.1128/jb.148.1.220-231.1981.