» Articles » PMID: 4583228

Characterization of the Membranes of Thermoplasma Acidophilum

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1973 Nov 1
PMID 4583228
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Thermoplasma acidophilum grows optimally under aeration at 59 C and pH 2. Both intact cells and membranes disaggregate below pH 1 and above pH 5, producing no sedimentable particles. Increase in ionic strength at pH 5 or below results in cellular lysis and membrane disaggregation. Membranous components produced by lysis at alkaline pH reaggregate upon reduction of both pH and ionic strength. Osmotic environment plays little role in cellular stability. Membranes prepared by sonic lysis at pH 5 exhibit vesicular structures and are composed of multiple proteins. Although the amino acid composition of the membrane proteins is similar to other mycoplasmal membranes, the number of free amino and carboxyl groups is less than half of those in Acholeplasma. Reduction of the number of free carboxyl groups results in membrane stabilization over a wide range of pH. Increase in the number of free amino groups reverses the stability of membranes relative to pH. Acidophily in Thermoplasma can be related to a significant reduction in repulsing negative charges on the membrane proteins.

Citing Articles

Cell wall skeleton of Mycobacterium bovis BCG enhances the vaccine potential of antigen 85B against tuberculosis by inducing Th1 and Th17 responses.

Back Y, Choi S, Choi H, Shin K, Son Y, Paik T PLoS One. 2019; 14(3):e0213536.

PMID: 30849108 PMC: 6407753. DOI: 10.1371/journal.pone.0213536.


Life in hot springs and hydrothermal vents.

Segerer A, Burggraf S, Fiala G, Huber G, Huber R, Pley U Orig Life Evol Biosph. 1993; 23(1):77-90.

PMID: 11536528 DOI: 10.1007/BF01581992.


Immunofluorescence approach to the study of the ecology of Thermoplasma acidophilum in coal refuse material.

Bohlool B, Brock T Appl Microbiol. 1974; 28(1):11-6.

PMID: 4602306 PMC: 186572. DOI: 10.1128/am.28.1.11-16.1974.


Dialysis culture of T-strain mycoplasmas.

Masover G, Hayflick L J Bacteriol. 1974; 118(1):46-52.

PMID: 4595203 PMC: 246638. DOI: 10.1128/jb.118.1.46-52.1974.


Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius.

Langworthy T, Mayberry W, Smith P J Bacteriol. 1974; 119(1):106-16.

PMID: 4407015 PMC: 245579. DOI: 10.1128/jb.119.1.106-116.1974.


References
1.
Hoare D, Koshland Jr D . A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem. 1967; 242(10):2447-53. View

2.
Engelman D, Morowitz H . Characterization of the plasma membrane of Mycoplasma laidlawii. IV. Structure and composition of membrane and aggregated components. Biochim Biophys Acta. 1968; 150(3):385-96. DOI: 10.1016/0005-2736(68)90137-5. View

3.
Kushner D . Halophilic bacteria. Adv Appl Microbiol. 1968; 10:73-99. DOI: 10.1016/s0065-2164(08)70189-8. View

4.
Weinstein D, MARSH J, GLICK M, Warren L . Membranes of animal cells. IV. Lipids of the L cell and its surface membrane. J Biol Chem. 1969; 244(15):4103-11. View

5.
Smith P, Koostra W, Mayberry W . Observations on membranes of Mycoplasma laidlawii strain B. J Bacteriol. 1969; 100(3):1166-74. PMC: 250282. DOI: 10.1128/jb.100.3.1166-1174.1969. View