» Articles » PMID: 4521797

Redox Potentials of Certain Vitamins K: Implications for a Role in Sulfite Reduction by Obligately Anaerobic Bacteria

Overview
Specialty Science
Date 1974 Feb 1
PMID 4521797
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Redox potentials of a menaquinone (MK-6), isolated in earlier researches from two species of the obligately anaerobic genus, Desulfovibrio, as well as two other vitamins K(2)-menaquinones (MK-5) and (MK-9)- have been determined polarographically. The measurements have been validated by determination of redox potentials of 1,4-naphthoquinone and vitamin K(1) which agree with published potentiometric values. E(m7) for menaquinone (MK-6) is -0.067 +/- 0.010 V. Redox potentials calculated for terminal acceptor couples currently proposed in the mechanisms of sulfate reduction by Desulfovibrio are consistent with the involvement of menaquinone (MK-6) in at least one of the steps postulated during electron transfer with ultimate production of sulfide.

Citing Articles

Naphthoquinones Oxidize HS to Polysulfides and Thiosulfate, Implications for Therapeutic Applications.

Olson K, Clear K, Derry P, Gao Y, Ma Z, Cieplik N Int J Mol Sci. 2022; 23(21).

PMID: 36362080 PMC: 9657496. DOI: 10.3390/ijms232113293.


Vitamin C versus Cancer: Ascorbic Acid Radical and Impairment of Mitochondrial Respiration?.

Bakalova R, Zhelev Z, Miller T, Aoki I, Higashi T Oxid Med Cell Longev. 2020; 2020:1504048.

PMID: 32411317 PMC: 7201545. DOI: 10.1155/2020/1504048.


Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas.

Guan H, Hsieh Y, Lin P, Huang Y, Yoshimura M, Chen L Sci Rep. 2018; 8(1):14935.

PMID: 30297797 PMC: 6175931. DOI: 10.1038/s41598-018-33193-5.


Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect.

Ivanova D, Zhelev Z, Getsov P, Nikolova B, Aoki I, Higashi T Redox Biol. 2018; 16:352-358.

PMID: 29597144 PMC: 5953218. DOI: 10.1016/j.redox.2018.03.013.


Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.

Greening C, Ahmed F, Mohamed A, Lee B, Pandey G, Warden A Microbiol Mol Biol Rev. 2016; 80(2):451-93.

PMID: 27122598 PMC: 4867364. DOI: 10.1128/MMBR.00070-15.


References
1.
POSTGATE J . Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev. 1965; 29(4):425-41. PMC: 441294. DOI: 10.1128/br.29.4.425-441.1965. View

2.
Crane F, Low H . Quinones in energy-coupling systems. Physiol Rev. 1966; 46(4):662-95. DOI: 10.1152/physrev.1966.46.4.662. View

3.
Kobayashi K, Tachibana S, Ishimoto M . Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium. J Biochem. 1969; 65(1):155-7. View

4.
Suh B, Akagi J . Formation of thiosulfate from sulfite by Desulfovibrio vulgaris. J Bacteriol. 1969; 99(1):210-5. PMC: 249989. DOI: 10.1128/jb.99.1.210-215.1969. View

5.
Peck Jr H . The role of adenosine-5'-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem. 1962; 237:198-203. View