Zhou B, Tong Y, Yao Y, Zhang W, Zhan G, Zheng Q
Proc Natl Acad Sci U S A. 2024; 121(37):e2405236121.
PMID: 39226362
PMC: 11406288.
DOI: 10.1073/pnas.2405236121.
Adamus J, Ruszczynska A, Wyczalkowska-Tomasik A
Biomolecules. 2024; 14(7).
PMID: 39062583
PMC: 11275037.
DOI: 10.3390/biom14070869.
Maia L, Maiti B, Moura I, Moura J
Molecules. 2024; 29(1).
PMID: 38202704
PMC: 10779653.
DOI: 10.3390/molecules29010120.
Maia L
Molecules. 2023; 28(15).
PMID: 37570788
PMC: 10420851.
DOI: 10.3390/molecules28155819.
Zheng J, Zhang H, Lv J, Zhang M, Wan J, Gerrits N
JACS Au. 2023; 3(5):1328-1336.
PMID: 37234124
PMC: 10207100.
DOI: 10.1021/jacsau.3c00087.
Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: Nitrite reduction by molybdoenzymes.
Maia L, Moura J
Redox Biol. 2018; 19:274-289.
PMID: 30196191
PMC: 6129670.
DOI: 10.1016/j.redox.2018.08.020.
Stepwise N-H Bond Formation From N-Derived Iron Nitride, Imide and Amide Intermediates to Ammonia.
MacLeod K, McWilliams S, Mercado B, Holland P
Chem Sci. 2017; 7(9):5736-5746.
PMID: 28066537
PMC: 5207225.
DOI: 10.1039/C6SC00423G.
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases.
Maia L, Moura J
J Biol Inorg Chem. 2015; 20(2):403-33.
PMID: 25589250
DOI: 10.1007/s00775-014-1234-2.
The mononuclear molybdenum enzymes.
Hille R, Hall J, Basu P
Chem Rev. 2014; 114(7):3963-4038.
PMID: 24467397
PMC: 4080432.
DOI: 10.1021/cr400443z.
(13)C and (63,65)Cu ENDOR studies of CO dehydrogenase from Oligotropha carboxidovorans. Experimental evidence in support of a copper-carbonyl intermediate.
Shanmugam M, Wilcoxen J, Habel-Rodriguez D, Cutsail 3rd G, Kirk M, Hoffman B
J Am Chem Soc. 2013; 135(47):17775-82.
PMID: 24147852
PMC: 4521601.
DOI: 10.1021/ja406136f.
Possible role of metal(II) octacyanomolybdate(IV) in chemical evolution: interaction with ribose nucleotides.
Kumar A, Kamaluddin
Orig Life Evol Biosph. 2012; 43(1):1-17.
PMID: 23254853
DOI: 10.1007/s11084-012-9319-9.
Nitrite reduction by xanthine oxidase family enzymes: a new class of nitrite reductases.
Maia L, Moura J
J Biol Inorg Chem. 2010; 16(3):443-60.
PMID: 21170563
DOI: 10.1007/s00775-010-0741-z.
Insights into the Nature of Mo(V) Species in Solution: Modeling Catalytic Cycles for Molybdenum Enzymes.
Rajapakshe A, Snyder R, Astashkin A, Bernardson P, Evans D, Young C
Inorganica Chim Acta. 2010; 362(12):4603-4608.
PMID: 20161396
PMC: 2782868.
DOI: 10.1016/j.ica.2009.05.040.
Proton-coupled electron transfer.
Huynh M, Meyer T
Chem Rev. 2007; 107(11):5004-64.
PMID: 17999556
PMC: 3449329.
DOI: 10.1021/cr0500030.
Alkyne substrate interaction within the nitrogenase MoFe protein.
Dos Santos P, Mayer S, Barney B, Seefeldt L, Dean D
J Inorg Biochem. 2007; 101(11-12):1642-8.
PMID: 17610955
PMC: 2711850.
DOI: 10.1016/j.jinorgbio.2007.05.007.
Sulfite oxidizing enzymes.
Feng C, Tollin G, Enemark J
Biochim Biophys Acta. 2007; 1774(5):527-39.
PMID: 17459792
PMC: 1993547.
DOI: 10.1016/j.bbapap.2007.03.006.
X-ray absorption spectroscopy of xanthine oxidase. The molybdenum centres of the functional and the desulpho forms.
BORDAS J, Bray R, Garner C, Gutteridge S, Hasnain S
Biochem J. 1980; 191(2):499-508.
PMID: 6894537
PMC: 1162240.
DOI: 10.1042/bj1910499.
The effect of pH on the exchangeability with deuterium of protons coupled to molybdenum(V) in the active and the desulpho forms of xanthine oxidase.
Malthouse J, Bray R
Biochem J. 1983; 215(1):101-6.
PMID: 6312970
PMC: 1152368.
DOI: 10.1042/bj2150101.
The role of molybdenum in human biology.
Coughlan M
J Inherit Metab Dis. 1983; 6 Suppl 1:70-7.
PMID: 6312191
DOI: 10.1007/BF01811327.
Equilibria amongst different molybdenum (V)-containing species from sulphite oxidase. Evidence for a halide ligand of molybdenum in the low-pH species.
Bray R, Gutteridge S, Lamy M, Wilkinson T
Biochem J. 1983; 211(1):227-36.
PMID: 6307274
PMC: 1154346.
DOI: 10.1042/bj2110227.