Gambrill A, Faulkner R, Cline H
J Neurophysiol. 2016; 116(5):2281-2297.
PMID: 27582296
PMC: 5110636.
DOI: 10.1152/jn.00611.2016.
Oka M, Yamashita T, Ono S, Kubo I, Tabuchi A
Jpn J Ophthalmol. 2012; 57(2):225-32.
PMID: 23188512
DOI: 10.1007/s10384-012-0214-8.
Claas B, Dean J
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006; 192(10):1021-36.
PMID: 16775735
DOI: 10.1007/s00359-006-0137-2.
Feldman D, Knudsen E
J Neurosci. 1997; 17(17):6820-37.
PMID: 9254692
PMC: 6573134.
Jacobson M
Proc Natl Acad Sci U S A. 1971; 68(3):528-32.
PMID: 5276755
PMC: 388980.
DOI: 10.1073/pnas.68.3.528.
Binocular vision and cortical function.
WHITTERIDGE D
Proc R Soc Med. 1972; 65(11):947-52.
PMID: 4565859
PMC: 1644737.
Redistribution of visual projections in altered optic tecta of adult goldfish.
Sharma S
Proc Natl Acad Sci U S A. 1972; 69(9):2637-9.
PMID: 4506786
PMC: 427005.
DOI: 10.1073/pnas.69.9.2637.
Effects of lowered temperature on the responses of the smooth muscle of the isolated, blood-perfused dog's spleen to sympathetic nerve stimulation.
Davies B, Powis D, Withrington P
J Physiol. 1971; 212(2):18P-19P.
PMID: 4323304
PMC: 1395559.
The role of visual experience in the formation of binocular projections in frogs.
Udin S
Cell Mol Neurobiol. 1985; 5(1-2):85-102.
PMID: 3896495
PMC: 11572796.
DOI: 10.1007/BF00711087.
The ultrastructural organization of the isthmic nucleus in Xenopus.
McCart R, Straznicky C
Anat Embryol (Berl). 1988; 177(4):325-30.
PMID: 3354848
DOI: 10.1007/BF00315840.
Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry.
Grant S, Keating M
Exp Brain Res. 1989; 75(1):99-116.
PMID: 2707359
DOI: 10.1007/BF00248534.
Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. II. Abnormalities following early visual deprivation.
Grant S, Keating M
Exp Brain Res. 1989; 75(1):117-32.
PMID: 2707345
DOI: 10.1007/BF00248535.
Development of topographic connections between the isthmic nuclei and optic tecta in the frog Limnodynastes dorsalis.
Dann J, Beazley L
Anat Embryol (Berl). 1990; 181(2):167-76.
PMID: 2327597
DOI: 10.1007/BF00198956.
Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. III. Modifications following early eye rotation.
Grant S, Keating M
Exp Brain Res. 1992; 89(2):383-96.
PMID: 1623981
DOI: 10.1007/BF00228254.
Eye rotation in developing kittens: the effect on ocular dominance and receptive field organization of cortical cells.
Yinon U
Exp Brain Res. 1975; 24(2):215-8.
PMID: 1218553
DOI: 10.1007/BF00234065.
Factors determining decussation at the optic chiasma by developing retinotectal fibres in Xenopus.
Beazley L
Exp Brain Res. 1975; 23(5):491-504.
PMID: 1204693
DOI: 10.1007/BF00234917.
Development of intertectal neuronal connections in xenopus: the effects of contralateral transposition of the eye and of eye removal.
Beazley L
Exp Brain Res. 1975; 23(5):505-18.
PMID: 1204691
DOI: 10.1007/BF00234918.
Proceedings: Calcium influx into single crustacean muscle fibres as measured with a glass scintillator probe.
Ashley C, CALDWELL P, Lea T
J Physiol. 1975; 248(1):9P-10P.
PMID: 1151834
PMC: 1309501.
Inverted vision surgically induced in experienced cats: physiology of the primary cortex.
Yinon U
Exp Brain Res. 1977; 28(1-2):141-51.
PMID: 880999
DOI: 10.1007/BF00237092.
Abnormalities in the visual system of Xenopus after larval optic nerve section.
Beazley L
Exp Brain Res. 1977; 30(2-3):369-85.
PMID: 598434
DOI: 10.1007/BF00237263.