Salceda R
Front Neurosci. 2022; 16:947563.
PMID: 36188468
PMC: 9525178.
DOI: 10.3389/fnins.2022.947563.
Seemiller L, Gould T
Neurobiol Learn Mem. 2020; 172:107234.
PMID: 32428585
PMC: 7797082.
DOI: 10.1016/j.nlm.2020.107234.
Brandenburg J, Fogarty M, Brown A, Sieck G
J Neurophysiol. 2020; 123(5):1682-1690.
PMID: 32233911
PMC: 7444911.
DOI: 10.1152/jn.00026.2020.
Brandenburg J, Fogarty M, Sieck G
Physiology (Bethesda). 2019; 34(3):216-229.
PMID: 30968751
PMC: 7938766.
DOI: 10.1152/physiol.00054.2018.
Rahmati N, Hoebeek F, Peter S, De Zeeuw C
Front Cell Neurosci. 2018; 12:101.
PMID: 29765304
PMC: 5938380.
DOI: 10.3389/fncel.2018.00101.
Differences in lumbar motor neuron pruning in an animal model of early onset spasticity.
Brandenburg J, Gransee H, Fogarty M, Sieck G
J Neurophysiol. 2018; 120(2):601-609.
PMID: 29718808
PMC: 6139463.
DOI: 10.1152/jn.00186.2018.
Glycine blocks long-term potentiation of GABAergic synapses in the ventral tegmental area.
Guan Y, Ye J
Neuroscience. 2016; 318:134-42.
PMID: 26806277
PMC: 4753108.
DOI: 10.1016/j.neuroscience.2016.01.017.
The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus.
Kawai N, Sakai N, Okuro M, Karakawa S, Tsuneyoshi Y, Kawasaki N
Neuropsychopharmacology. 2014; 40(6):1405-16.
PMID: 25533534
PMC: 4397399.
DOI: 10.1038/npp.2014.326.
Rabbit model simulating transient hyperglycinemia following transurethral prostatectomy.
Gentens P, De Deyn P, DHooge R, Pei H, Tassignon M, Van Dromme S
Amino Acids. 2013; 11(1):43-53.
PMID: 24178637
DOI: 10.1007/BF00805720.
Sensitivity of spinal neurons to GABA and glycine during voluntary movement in behaving monkeys.
Wu G, Perlmutter S
J Neurophysiol. 2012; 109(1):193-201.
PMID: 23076104
PMC: 3545157.
DOI: 10.1152/jn.01081.2011.
Direct and indirect control of orexin/hypocretin neurons by glycine receptors.
Karnani M, Venner A, Jensen L, Fugger L, Burdakov D
J Physiol. 2010; 589(Pt 3):639-51.
PMID: 21135047
PMC: 3055548.
DOI: 10.1113/jphysiol.2010.198457.
Early history of glycine receptor biology in Mammalian spinal cord circuits.
Callister R, Graham B
Front Mol Neurosci. 2010; 3:13.
PMID: 20577630
PMC: 2889717.
DOI: 10.3389/fnmol.2010.00013.
The specification of glycinergic neurons and the role of glycinergic transmission in development.
Chalphin A, Saha M
Front Mol Neurosci. 2010; 3:11.
PMID: 20461146
PMC: 2866564.
DOI: 10.3389/fnmol.2010.00011.
When and why amino acids?.
Krnjevic K
J Physiol. 2009; 588(Pt 1):33-44.
PMID: 19822549
PMC: 2821545.
DOI: 10.1113/jphysiol.2009.176990.
Complexes of Cu(II) ions and noncovalent interactions in systems with L-aspartic acid and cytidine-5'-monophosphate.
Bregier-Jarzebowska R, Gasowska A, Lomozik L
Bioinorg Chem Appl. 2008; :253971.
PMID: 18682818
PMC: 2494589.
DOI: 10.1155/2008/253971.
Activation of group I metabotropic glutamate receptors depresses recurrent inhibition of motoneurons in the neonatal rat spinal cord in vitro.
Marchetti C, Taccola G, Nistri A
Exp Brain Res. 2005; 164(3):406-10.
PMID: 15991027
DOI: 10.1007/s00221-005-2368-9.
Taurine activates excitatory non-synaptic glycine receptors on dopamine neurones in ventral tegmental area of young rats.
Wang F, Xiao C, Ye J
J Physiol. 2005; 565(Pt 2):503-16.
PMID: 15817633
PMC: 1464534.
DOI: 10.1113/jphysiol.2005.085423.
Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area.
Ye J, Wang F, Krnjevic K, Wang W, Xiong Z, Zhang J
J Neurosci. 2004; 24(41):8961-74.
PMID: 15483115
PMC: 6730073.
DOI: 10.1523/JNEUROSCI.2016-04.2004.
Functional properties of motoneurons derived from mouse embryonic stem cells.
Miles G, Yohn D, Wichterle H, Jessell T, Rafuse V, Brownstone R
J Neurosci. 2004; 24(36):7848-58.
PMID: 15356197
PMC: 6729934.
DOI: 10.1523/JNEUROSCI.1972-04.2004.
Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study.
Kodama T, Lai Y, Siegel J
J Neurosci. 2003; 23(4):1548-54.
PMID: 12598643
PMC: 6742274.