» Articles » PMID: 4375957

The Inhibition of Mitochondrial Calcium Transport by Lanthanides and Ruthenium Red

Overview
Journal Biochem J
Specialty Biochemistry
Date 1974 May 1
PMID 4375957
Citations 86
Authors
Affiliations
Soon will be listed here.
Abstract

An EGTA (ethanedioxybis(ethylamine)tetra-acetic acid)-quench technique was developed for measuring initial rates of (45)Ca(2+) transport by rat liver mitochondria. This method was used in conjunction with studies of Ca(2+)-stimulated respiration to examine the mechanisms of inhibition of Ca(2+) transport by the lanthanides and Ruthenium Red. Ruthenium Red inhibits Ca(2+) transport non-competitively with K(i) 3x10(-8)m; there are 0.08nmol of carrier-specific binding sites/mg of protein. The inhibition by La(3+) is competitive (K(i)=2x10(-8)m); the concentration of lanthanide-sensitive sites is less than 0.001nmol/mg of protein. A further difference between their modes of action is that lanthanide inhibition diminishes with time whereas that by Ruthenium Red does not. Binding studies showed that both classes of inhibitor bind to a relatively large number of external sites (probably identical with the ;low-affinity' Ca(2+)-binding sites). La(3+) competes with Ruthenium Red for most of these sites, but a small fraction of the bound Ruthenium Red (less than 2nmol/mg of protein) is not displaced by La(3+). The results are discussed briefly in relation to possible models for a Ca(2+) carrier.

Citing Articles

Lanthanide conjugate Pr-MPO elicits anti-cancer activity by targeting lysosomal machinery and inducing zinc-dependent cataplerosis.

Bellot G, Liu D, Fivaz M, Yadav S, Kaur C, Pervaiz S Cell Commun Signal. 2024; 22(1):509.

PMID: 39427179 PMC: 11490180. DOI: 10.1186/s12964-024-01883-5.


The mitochondrial calcium uniporter inhibitor Ru265 increases neuronal excitability and reduces neurotransmission via off-target effects.

Xu P, Swain S, Novorolsky R, Garcia E, Huang Z, Snutch T Br J Pharmacol. 2024; 181(18):3503-3526.

PMID: 38779706 PMC: 11309911. DOI: 10.1111/bph.16425.


MICU1 controls the sensitivity of the mitochondrial Ca uniporter to activators and inhibitors.

Rodriguez-Prados M, Huang K, Marta K, Paillard M, Csordas G, Joseph S Cell Chem Biol. 2023; 30(6):606-617.e4.

PMID: 37244260 PMC: 10370359. DOI: 10.1016/j.chembiol.2023.05.002.


Mitochondrial protein dysfunction in pathogenesis of neurological diseases.

Wang L, Yang Z, He X, Pu S, Yang C, Wu Q Front Mol Neurosci. 2022; 15:974480.

PMID: 36157077 PMC: 9489860. DOI: 10.3389/fnmol.2022.974480.


Pharmacological inhibition of the mitochondrial Ca uniporter: Relevance for pathophysiology and human therapy.

Marta K, Hasan P, Rodriguez-Prados M, Paillard M, Hajnoczky G J Mol Cell Cardiol. 2020; 151:135-144.

PMID: 33035551 PMC: 7880870. DOI: 10.1016/j.yjmcc.2020.09.014.


References
1.
Chance B, Mela L . Calcium and manganese interactions in mitochondrial ion accumulation. Biochemistry. 1966; 5(10):3220-3. DOI: 10.1021/bi00874a022. View

2.
Lehninger A, Carafoli E, ROSSI C . Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967; 29:259-320. DOI: 10.1002/9780470122747.ch6. View

3.
Rossi C, Azzi A, Azzone G . Ion transport in liver mitochondria. I. Metabolism-independent Ca++ binding and H+ release. J Biol Chem. 1967; 242(5):951-7. View

4.
Vasington F, Gazzotti P, Tiozzo R, Carafoli E . The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972; 256(1):43-54. DOI: 10.1016/0005-2728(72)90161-2. View

5.
Vainio H, Mela L, Chance B . Energy dependent bivalent cation translocation in rat liver mitochondria. Eur J Biochem. 1970; 12(2):387-91. DOI: 10.1111/j.1432-1033.1970.tb00863.x. View