Del Bigio M
Front Cell Neurosci. 2024; 17:1320369.
PMID: 38259502
PMC: 10800557.
DOI: 10.3389/fncel.2023.1320369.
McQuaid C, Brady M, Deane R
Fluids Barriers CNS. 2021; 18(1):32.
PMID: 34261487
PMC: 8278192.
DOI: 10.1186/s12987-021-00267-y.
Dur A, Tang T, Viviano S, Sekuri A, Willsey H, Tagare H
Fluids Barriers CNS. 2020; 17(1):72.
PMID: 33308296
PMC: 7731788.
DOI: 10.1186/s12987-020-00234-z.
Joshi R, Panicker M
eNeuro. 2019; 5(5).
PMID: 30713996
PMC: 6354787.
DOI: 10.1523/ENEURO.0220-18.2018.
Batiz L, Castro M, Burgos P, Velasquez Z, Munoz R, Lafourcade C
Front Cell Neurosci. 2016; 9:501.
PMID: 26834560
PMC: 4717294.
DOI: 10.3389/fncel.2015.00501.
Structure and function of the ependymal barrier and diseases associated with ependyma disruption.
Jimenez A, Dominguez-Pinos M, Guerra M, Fernandez-Llebrez P, Perez-Figares J
Tissue Barriers. 2014; 2:e28426.
PMID: 25045600
PMC: 4091052.
DOI: 10.4161/tisb.28426.
Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1.
Hagenlocher C, Walentek P, M Ller C, Thumberger T, Feistel K
Cilia. 2013; 2(1):12.
PMID: 24229449
PMC: 3848805.
DOI: 10.1186/2046-2530-2-12.
Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume.
Conductier G, Brau F, Viola A, Langlet F, Ramkumar N, Dehouck B
Nat Neurosci. 2013; 16(7):845-7.
PMID: 23708141
DOI: 10.1038/nn.3401.
Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo.
Mogi K, Adachi T, Izumi S, Toyoizumi R
Fluids Barriers CNS. 2012; 9:9.
PMID: 22534239
PMC: 3350447.
DOI: 10.1186/2045-8118-9-9.
Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells.
Genzen J, Yang D, Ravid K, Bordey A
Cerebrospinal Fluid Res. 2009; 6:15.
PMID: 19922651
PMC: 2791093.
DOI: 10.1186/1743-8454-6-15.
Intracellular pathways regulating ciliary beating of rat brain ependymal cells.
Nguyen T, Chin W, OBrien J, Verdugo P, Berger A
J Physiol. 2001; 531(Pt 1):131-40.
PMID: 11179397
PMC: 2278437.
DOI: 10.1111/j.1469-7793.2001.0131j.x.
Role of disturbance of ependymal ciliary movement in development of hydrocephalus in rats.
Nakamura Y, Sato K
Childs Nerv Syst. 1993; 9(2):65-71.
PMID: 8319234
DOI: 10.1007/BF00305310.
Decreased cerebrospinal fluid flow through the central canal of the spinal cord of rats immunologically deprived of Reissner's fibre.
Cifuentes M, Rodriguez S, Perez J, Grondona J, Rodriguez E, Fernandez-Llebrez P
Exp Brain Res. 1994; 98(3):431-40.
PMID: 8056065
DOI: 10.1007/BF00233981.
Extracellular ATP induces hyperpolarization and motility stimulation of ciliary cells.
Tarasiuk A, Gheber L, Korngreen A, Grossman Y, Priel Z
Biophys J. 1995; 68(3):1163-9.
PMID: 7756536
PMC: 1281839.
DOI: 10.1016/S0006-3495(95)80292-4.
Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus.
Zeuthen T, Wright E
J Membr Biol. 1981; 60(2):105-28.
PMID: 6973025
DOI: 10.1007/BF01870414.
Regulation of bicarbonate transport across the brush border membrane of the bull-frog choroid plexus.
Saito Y, Wright E
J Physiol. 1984; 350:327-42.
PMID: 6611401
PMC: 1199272.
DOI: 10.1113/jphysiol.1984.sp015204.
Kinetics of the sodium pump in the frog choroid plexus.
Saito Y, Wright E
J Physiol. 1982; 328:229-43.
PMID: 6290645
PMC: 1225655.
DOI: 10.1113/jphysiol.1982.sp014261.
Effect of sublingual isosorbide dinitrate on sputum volume and viscoelasticity in chronic obstructive lung disease.
Okayama M, Shimura S, Sasaki H, Takishima T
Eur J Clin Pharmacol. 1986; 30(2):183-6.
PMID: 3709642
DOI: 10.1007/BF00614299.
The mechanism of electrodiffusive K+ transport in leaky epithelia and some of its consequences for anion transport.
Zeuthen T, CHRISTENSEN O, Baerentsen J, la Cour M
Pflugers Arch. 1987; 408(3):260-6.
PMID: 3575091
DOI: 10.1007/BF02181468.
Ultrastructure and movement of the ependymal and tracheal cilia in congenitally hydrocephalic WIC-Hyd rats.
Shimizu A, Koto M
Childs Nerv Syst. 1992; 8(1):25-32.
PMID: 1576603
DOI: 10.1007/BF00316558.