» Articles » PMID: 4347925

Chromatographically Fractionated Complementary Strands of Bacillus Subtilis Deoxyribonucleic Acid: Biological Properties

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1973 Feb 1
PMID 4347925
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Biological, physical, and chromatographic properties of methylated albuminkieselguhr (MAK)-fractionated complementary strands, designated as light (L) and heavy (H), of Bacillus subtilis deoxyribonucleic acid (DNA) are presented. The pattern of transforming activity along the MAK elution profile of alkilidenatured DNA shows that the residually active molecules selectively fractionated ahead of the L strand fraction, whereas the most active self-annealed molecules fractionated preferentially at the trailing end of the H strand fraction. The restoration rate of transforming activity in the late-eluting H molecules was rapid and independent of concentration during the annealing reaction. The data suggest that the self-annealing activity in the H strand is due in part to the formation of intrastrand secondary structures. Hydroxyapatite chromatography of self-annealed L and H strands yielded a major fraction (I) of highly purified strand preparations devoid of transforming activity and hypochromicity, and a minor "nativelike" fraction (II). Sedimentation velocity measurements show that, in addition to the mutual complementary nature of the L and H fractions, they differ in molecular size and possibly configuration.

Citing Articles

Chromatographically fractionated complementary strands of Bacillus subtilis deoxyribonucleic acid: transformation of hybrids.

Rudner R, Remeza V J Bacteriol. 1973; 113(2):754-62.

PMID: 4347926 PMC: 285290. DOI: 10.1128/jb.113.2.754-762.1973.


Relationship between lysogeny, spontaneous induction, and transformation efficiencies in Bacillus subtilis.

Garro A, Law M J Bacteriol. 1974; 120(3):1256-9.

PMID: 4215796 PMC: 245908. DOI: 10.1128/jb.120.3.1256-1259.1974.


Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX.

Thurm P, Garro A J Virol. 1975; 16(1):184-91.

PMID: 805847 PMC: 354647. DOI: 10.1128/JVI.16.1.184-191.1975.

References
1.
Rudner R, LeDoux M, Mazelis A . Distribution of pyrimidine oligonucleotides in strands L and H of Bacillus subtilis DNA. Proc Natl Acad Sci U S A. 1972; 69(9):2745-9. PMC: 427031. DOI: 10.1073/pnas.69.9.2745. View

2.
Anagnostopoulos C, Spizizen J . REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961; 81(5):741-6. PMC: 279084. DOI: 10.1128/jb.81.5.741-746.1961. View

3.
Bodmer W . Integration of deoxyribonuclease-treated DNA in bacillus subtilis transformation. J Gen Physiol. 1966; 49(6):233-58. PMC: 2195534. DOI: 10.1085/jgp.49.6.233. View

4.
Margulies L, Remeza V, Rudner R . Asymmetric template function of microbial deoxyribonucleic acids: transcription of ribosomal and soluble ribonucleic acids. J Bacteriol. 1970; 103(3):560-8. PMC: 248127. DOI: 10.1128/jb.103.3.560-568.1970. View

5.
Rownd R, Green D, Sternglanz R, Doty P . Origin of the residual transforming activity of denatured Bacillus subtilis DNA. J Mol Biol. 1968; 32(2):369-77. DOI: 10.1016/0022-2836(68)90016-8. View