Conesa-Bakkali R, Morillo-Huesca M, Martinez-Fabregas J
Cells. 2025; 14(2).
PMID: 39851495
PMC: 11763575.
DOI: 10.3390/cells14020068.
Zalon A, Quiriconi D, Pitcairn C, Mazzulli J
Neuroscientist. 2024; 30(5):612-635.
PMID: 38420922
PMC: 11358363.
DOI: 10.1177/10738584241232963.
Seo J, Oh D
Anim Cells Syst (Seoul). 2022; 26(3):84-91.
PMID: 35784393
PMC: 9246025.
DOI: 10.1080/19768354.2022.2079719.
Meras I, Maes J, Lefrancois S
Biosci Rep. 2022; 42(5).
PMID: 35394021
PMC: 9109462.
DOI: 10.1042/BSR20211856.
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo K
Chembiochem. 2021; 23(13):e202100327.
PMID: 34496130
PMC: 8901795.
DOI: 10.1002/cbic.202100327.
Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions.
Kok K, Zwiers K, Boot R, Overkleeft H, Aerts J, Artola M
Biomolecules. 2021; 11(2).
PMID: 33673160
PMC: 7918333.
DOI: 10.3390/biom11020271.
The rapidly evolving view of lysosomal storage diseases.
Parenti G, Medina D, Ballabio A
EMBO Mol Med. 2021; 13(2):e12836.
PMID: 33459519
PMC: 7863408.
DOI: 10.15252/emmm.202012836.
Mucolipidoses Overview: Past, Present, and Future.
Khan S, Tomatsu S
Int J Mol Sci. 2020; 21(18).
PMID: 32957425
PMC: 7555117.
DOI: 10.3390/ijms21186812.
Chapter 6 Protein Sorting in the Secretory Pathway.
Rodriguez-Boulan E, Misek D, Salas D, Salas P, Bard E
Curr Top Membr Transp. 2020; 24:251-294.
PMID: 32287478
PMC: 7146842.
DOI: 10.1016/S0070-2161(08)60328-7.
Characterization of mesenchymal stem cells in mucolipidosis type II (I-cell disease).
Kose S, Aerts Kaya F, Kuskonmaz B, Uckan Cetinkaya D
Turk J Biol. 2019; 43(3):171-178.
PMID: 31320815
PMC: 6620033.
DOI: 10.3906/biy-1902-20.
Modeling neuronopathic storage diseases with patient-derived culture systems.
Zunke F, Mazzulli J
Neurobiol Dis. 2019; 127:147-162.
PMID: 30790616
PMC: 6588474.
DOI: 10.1016/j.nbd.2019.01.018.
Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives.
Solomon M, Muro S
Adv Drug Deliv Rev. 2017; 118:109-134.
PMID: 28502768
PMC: 5828774.
DOI: 10.1016/j.addr.2017.05.004.
Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II.
Markmann S, Krambeck S, Hughes C, Mirzaian M, Aerts J, Saftig P
Mol Cell Proteomics. 2017; 16(3):438-450.
PMID: 28062798
PMC: 5341004.
DOI: 10.1074/mcp.M116.063636.
Biological roles of glycans.
Varki A
Glycobiology. 2016; 27(1):3-49.
PMID: 27558841
PMC: 5884436.
DOI: 10.1093/glycob/cww086.
Lysosomal Storage Diseases-Regulating Neurodegeneration.
Onyenwoke R, Brenman J
J Exp Neurosci. 2016; 9(Suppl 2):81-91.
PMID: 27081317
PMC: 4822725.
DOI: 10.4137/JEN.S25475.
Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease.
McCurdy V, Rockwell H, Arthur J, Bradbury A, Johnson A, Randle A
Gene Ther. 2014; 22(2):181-9.
PMID: 25474439
DOI: 10.1038/gt.2014.108.
A novel mouse model of a patient mucolipidosis II mutation recapitulates disease pathology.
Paton L, Bitoun E, Kenyon J, Priestman D, Oliver P, Edwards B
J Biol Chem. 2014; 289(39):26709-26721.
PMID: 25107912
PMC: 4175314.
DOI: 10.1074/jbc.M114.586156.
Sustained normalization of neurological disease after intracranial gene therapy in a feline model.
McCurdy V, Johnson A, Gray-Edwards H, Randle A, Brunson B, Morrison N
Sci Transl Med. 2014; 6(231):231ra48.
PMID: 24718858
PMC: 4412602.
DOI: 10.1126/scitranslmed.3007733.
Discovery of the cellular and molecular basis of cholesterol control.
Schekman R
Proc Natl Acad Sci U S A. 2013; 110(37):14833-6.
PMID: 23975928
PMC: 3773783.
DOI: 10.1073/pnas.1312967110.
A case of mucolipidosis II presenting with prenatal skeletal dysplasia and severe secondary hyperparathyroidism at birth.
Heo J, Choi K, Sohn S, Kim C, Kim Y, Shin S
Korean J Pediatr. 2012; 55(11):438-44.
PMID: 23227064
PMC: 3510274.
DOI: 10.3345/kjp.2012.55.11.438.