Reinhardt C, Lee J, Hendricks L, Green T, Kunczynski L, Roberts A
J Am Chem Soc. 2025; 147(3):2432-2443.
PMID: 39772501
PMC: 11753938.
DOI: 10.1021/jacs.4c12633.
Groves J, Feng L, Austin R
Acc Chem Res. 2023; 56(24):3665-3675.
PMID: 38032826
PMC: 11623191.
DOI: 10.1021/acs.accounts.3c00590.
Williams S, Austin R
Front Microbiol. 2022; 13:845551.
PMID: 35295299
PMC: 8918992.
DOI: 10.3389/fmicb.2022.845551.
Williams S, Forsberg A, Lee J, Vizcarra C, Lopatkin A, Austin R
J Inorg Biochem. 2021; 219:111409.
PMID: 33752122
PMC: 8557626.
DOI: 10.1016/j.jinorgbio.2021.111409.
Imai T, Takigawa H, Nakagawa S, Shen G, Kodama T, Minoda Y
Appl Environ Microbiol. 1986; 52(6):1403-6.
PMID: 16347244
PMC: 239242.
DOI: 10.1128/aem.52.6.1403-1406.1986.
Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26.
Patel R, Hou C, Laskin A, Felix A
Appl Environ Microbiol. 1982; 44(5):1130-7.
PMID: 16346133
PMC: 242158.
DOI: 10.1128/aem.44.5.1130-1137.1982.
Synthesis of 1,2-Epoxyoctane by Pseudomonas oleovorans During Growth in a Two-Phase System Containing High Concentrations of 1-Octene.
De Smet M, Wynberg H, Witholt B
Appl Environ Microbiol. 1981; 42(5):811-6.
PMID: 16345883
PMC: 244112.
DOI: 10.1128/aem.42.5.811-816.1981.
Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases.
van Beilen J, Smits T, Roos F, Brunner T, Balada S, Rothlisberger M
J Bacteriol. 2004; 187(1):85-91.
PMID: 15601691
PMC: 538836.
DOI: 10.1128/JB.187.1.85-91.2005.
Genetics of alkane oxidation by Pseudomonas oleovorans.
van Beilen J, Wubbolts M, Witholt B
Biodegradation. 1994; 5(3-4):161-74.
PMID: 7532480
DOI: 10.1007/BF00696457.
Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements.
Schwartz R, McCoy C
Appl Microbiol. 1973; 26(2):217-8.
PMID: 4743875
PMC: 379756.
DOI: 10.1128/am.26.2.217-218.1973.
Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans.
ABBOTT B, Hou C
Appl Microbiol. 1973; 26(1):86-91.
PMID: 4726833
PMC: 379722.
DOI: 10.1128/am.26.1.86-91.1973.
Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans.
Schwartz R
Appl Microbiol. 1973; 25(4):574-7.
PMID: 4699216
PMC: 380864.
DOI: 10.1128/am.25.4.574-577.1973.
Enzymatic epoxidation: synthesis of 7,8-epoxy-1-octene, 1,2-7,8-diepoxyoctane, and 1,2-Epoxyoctane by Pseudomonas oleovorans.
Schwartz R, McCoy C
Appl Environ Microbiol. 1976; 31(1):78-82.
PMID: 942210
PMC: 169722.
DOI: 10.1128/aem.31.1.78-82.1976.
Epoxidation of 1,7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane.
Schwartz R, McCoy C
Appl Environ Microbiol. 1977; 34(1):47-9.
PMID: 889327
PMC: 242587.
DOI: 10.1128/aem.34.1.47-49.1977.
Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria.
Patel R, Hou C, Laskin A, Felix A, Derelanko P
J Bacteriol. 1979; 139(2):675-9.
PMID: 222739
PMC: 216921.
DOI: 10.1128/jb.139.2.675-679.1979.
Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria.
Hou C, Patel R, Laskin A, Barnabe N
Appl Environ Microbiol. 1979; 38(1):127-34.
PMID: 39502
PMC: 243446.
DOI: 10.1128/aem.38.1.127-134.1979.