Priya M, Gupta S, Koundal A, Kapoor S, Tiwari S, Kidwai S
Proc Natl Acad Sci U S A. 2025; 122(4):e2423114122.
PMID: 39841148
PMC: 11789021.
DOI: 10.1073/pnas.2423114122.
Shi X, Zhou H, Wei J, Mo W, Li Q, Lv X
Redox Biol. 2022; 58:102553.
PMID: 36459716
PMC: 9713374.
DOI: 10.1016/j.redox.2022.102553.
Peace C, ONeill L
J Clin Invest. 2022; 132(2).
PMID: 35040439
PMC: 8759771.
DOI: 10.1172/JCI148548.
Wang H, Fedorov A, Fedorov E, Hunt D, Rodgers A, Douglas H
Proc Natl Acad Sci U S A. 2019; 116(32):15907-15913.
PMID: 31320588
PMC: 6689899.
DOI: 10.1073/pnas.1906606116.
Hanko E, Minton N, Malys N
ACS Synth Biol. 2018; 7(5):1436-1446.
PMID: 29638114
PMC: 6345495.
DOI: 10.1021/acssynbio.8b00057.
Biochemistry of proinflammatory macrophage activation.
Nonnenmacher Y, Hiller K
Cell Mol Life Sci. 2018; 75(12):2093-2109.
PMID: 29502308
PMC: 5948278.
DOI: 10.1007/s00018-018-2784-1.
Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels.
Cordes T, Wallace M, Michelucci A, Divakaruni A, Sapcariu S, Sousa C
J Biol Chem. 2016; 291(27):14274-14284.
PMID: 27189937
PMC: 4933182.
DOI: 10.1074/jbc.M115.685792.
Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans.
Kronen M, Sasikaran J, Berg I
Appl Environ Microbiol. 2015; 81(16):5632-8.
PMID: 26070669
PMC: 4510160.
DOI: 10.1128/AEM.00822-15.
Bacterial itaconate degradation promotes pathogenicity.
Sasikaran J, Ziemski M, Zadora P, Fleig A, Berg I
Nat Chem Biol. 2014; 10(5):371-7.
PMID: 24657929
DOI: 10.1038/nchembio.1482.
Biochemistry of microbial itaconic acid production.
Steiger M, Blumhoff M, Mattanovich D, Sauer M
Front Microbiol. 2013; 4:23.
PMID: 23420787
PMC: 3572532.
DOI: 10.3389/fmicb.2013.00023.
Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus.
Zarzycki J, Brecht V, Muller M, Fuchs G
Proc Natl Acad Sci U S A. 2009; 106(50):21317-22.
PMID: 19955419
PMC: 2795484.
DOI: 10.1073/pnas.0908356106.
Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.
Friedmann S, Alber B, Fuchs G
J Bacteriol. 2006; 188(18):6460-8.
PMID: 16952935
PMC: 1595468.
DOI: 10.1128/JB.00659-06.
Enzyme Profiles in Seedling Development and the Effect of Itaconate, an Isocitrate Lyase-directed Reagent.
Khan F, McFadden B
Plant Physiol. 1979; 64(2):228-31.
PMID: 16660938
PMC: 543060.
DOI: 10.1104/pp.64.2.228.
THE UTILIZATION OF ACONATE AND ITACONATE BY MICROCOCCUS SP.
Cooper R, ITIABA K, Kornberg H
Biochem J. 1965; 94:25-31.
PMID: 14342240
PMC: 1206401.
DOI: 10.1042/bj0940025.
(R)-citramalate synthase in methanogenic archaea.
Howell D, Xu H, White R
J Bacteriol. 1998; 181(1):331-3.
PMID: 9864346
PMC: 103565.
DOI: 10.1128/JB.181.1.331-333.1999.
Metabolism of cyclohexaneacetic acid and cyclohexanebutyric acid by Arthrobacter sp. strain CA1.
Ougham H, Trudgill P
J Bacteriol. 1982; 150(3):1172-82.
PMID: 7076617
PMC: 216338.
DOI: 10.1128/jb.150.3.1172-1182.1982.
The enzymic degradation of alkyl-substituted gentisates, maleates and malates.
Hopper D, Chapman P, DAGLEY S
Biochem J. 1971; 122(1):29-40.
PMID: 5124802
PMC: 1176684.
DOI: 10.1042/bj1220029.
Metabolism of (-)-citramalate.
Maskati F, Rao M, Subramanian S, Jagannathan V
Biochem J. 1972; 128(1):62P.
PMID: 5085651
PMC: 1173729.
DOI: 10.1042/bj1280062pb.
Regulation of catabolic pathways in Pseudomonas.
ORNSTON L
Bacteriol Rev. 1971; 35(2):87-116.
PMID: 4935534
PMC: 378377.
DOI: 10.1128/br.35.2.87-116.1971.
Alternate pathways of metabolism of short-chain fatty acids.
Wegener W, Reeves H, Rabin R, AJL S
Bacteriol Rev. 1968; 32(1):1-26.
PMID: 4869938
PMC: 378289.
DOI: 10.1128/br.32.1.1-26.1968.