Ultrastructure of Barnacle Giant Muscle Fibers
Overview
Authors
Affiliations
Increasing use of barnacle giant muscle fibers for physiological research has prompted this investigation of their fine structure. The fibers are invaginated by a multibranched system of clefts connecting to the exterior and filled with material similar to that of the basement material of the sarcolemmal complex. Tubules originate from the surface plasma membrane at irregular sites, and also from the clefts They run transversely, spirally, and longitudinally, making many diadic and some triadic contacts with cisternal sacs of the longitudinal sarcoplasmic reticulum. The contacts are not confined to any particular region of the sarcomere. The tubules are wider and their walls are thicker at points of contact with Z material. Some linking of the Z regions occurs across spaces within the fiber which contain large numbers of glycogen particles. A-band lengths are extremely variable, in the range 2.2 microm-20.3 microm (average 5.2 microm) Individual thick filaments have thin (110 A) hollow regions alternating with thick (340 A) solid ones. Bridges between thick filaments occur at random points and are not concentrated into an M band The thin:thick filament ratio is variable in different parts of a fiber, from 3:1 to 6:1. Z bands are basically perforated, but the number of perforations may increase during contraction.
Regulation of myocardial contraction as revealed by intracellular Ca measurements using aequorin.
Kurihara S, Fukuda N J Physiol Sci. 2024; 74(1):12.
PMID: 38383293 PMC: 10882819. DOI: 10.1186/s12576-024-00906-7.
Nguyen L, Stephenson D, STEPHENSON G J Muscle Res Cell Motil. 1998; 19(6):631-8.
PMID: 9742447 DOI: 10.1023/a:1005377030193.
Gordon A, Qian Y, Luo Z, Wang C, Mondares R, Martyn D J Muscle Res Cell Motil. 1998; 18(6):643-53.
PMID: 9429158 DOI: 10.1023/a:1018631806182.
Effect of pentachlorophenol on calcium accumulation in barnacle muscle cells.
Nwoga J, Sniffen J, Pena-Rasgado C, Kimler V J Physiol. 1996; 491 ( Pt 1):13-20.
PMID: 9011605 PMC: 1158755. DOI: 10.1113/jphysiol.1996.sp021192.
Palade P, Gyorke S J Muscle Res Cell Motil. 1993; 14(3):283-7.
PMID: 8395541 DOI: 10.1007/BF00123092.