Lervik A, Bedeaux D, Kjelstrup S
Eur Biophys J. 2012; 41(5):437-48.
PMID: 22453991
DOI: 10.1007/s00249-012-0797-5.
Boom H, Heijink R, van der Vliet G
Med Biol Eng Comput. 1981; 19(6):734-48.
PMID: 7329111
DOI: 10.1007/BF02441335.
Tanford C
J Gen Physiol. 1981; 77(2):223-9.
PMID: 7264597
PMC: 2215426.
DOI: 10.1085/jgp.77.2.223.
Ogawa Y, Kurebayashi N
J Muscle Res Cell Motil. 1982; 3(1):39-56.
PMID: 6804490
DOI: 10.1007/BF00711879.
Herbette L, Scarpa A, Blasie J, Bauer D, Wang C, Fleischer S
Biophys J. 1981; 36(1):27-46.
PMID: 6456781
PMC: 1327575.
DOI: 10.1016/S0006-3495(81)84715-7.
Rapid kinetic studies of active Ca2+ transport in sarcoplasmic reticulum.
Chiu V, Haynes D
J Membr Biol. 1980; 56(3):219-39.
PMID: 6450287
DOI: 10.1007/BF01869478.
Rapid kinetic study of the passive permeability of a Ca2+-ATPase rich fraction of the sarcoplasmic reticulum.
Chiu V, Haynes D
J Membr Biol. 1980; 56(3):203-18.
PMID: 6450286
DOI: 10.1007/BF01869477.
Calcium translocation mechanism in sarcoplasmic reticulum vesicles, deduced from location studies of protein-bound spin labels.
Champeil P, RIGAUD J
Proc Natl Acad Sci U S A. 1980; 77(5):2405-9.
PMID: 6446710
PMC: 349407.
DOI: 10.1073/pnas.77.5.2405.
Monovalent ion and calcium ion fluxes in sarcoplasmic reticulum.
Meissner G
Mol Cell Biochem. 1983; 55(1):65-82.
PMID: 6312285
DOI: 10.1007/BF00229243.
Reversal of decreased phosphorylation of sarcoplasmic reticulum calcium transport ATPase by 1,25-dihydroxycholecalciferol in experimental uremia.
Boland R, Matthews C, de Boland A, Ritz E, Hasselbach W
Calcif Tissue Int. 1983; 35(2):195-201.
PMID: 6221786
DOI: 10.1007/BF02405031.
The thermodynamic efficiency of the Ca2+-Mg2+-ATPase is one hundred percent.
Trevorrow K, Haynes D
J Bioenerg Biomembr. 1984; 16(1):53-9.
PMID: 6152629
DOI: 10.1007/BF00744145.
The pH dependence of the Ca2+, Mg2+-ATPase of sarcoplasmic reticulum: evidence that the Ca2+ translocator bears a doubly negative charge.
Haynes D, Mandveno A
J Membr Biol. 1983; 74(1):25-40.
PMID: 6134838
DOI: 10.1007/BF01870592.
The binding of ATP to the catalytic and the regulatory site of Ca2+, Mg2+-dependent ATPase of the sarcoplasmic reticulum.
Nakamura Y, Tonomura Y
J Bioenerg Biomembr. 1982; 14(5-6):307-18.
PMID: 6131070
DOI: 10.1007/BF00743060.
Effect of ATP/ADP/phosphate potential on the maximal steady-state uptake of Ca2+ by skeletal sarcoplasmic reticulum.
Dixon D, Corbett A, Haynes D
J Bioenerg Biomembr. 1982; 14(2):87-96.
PMID: 6124541
DOI: 10.1007/BF00745022.
Change in state of spin labels bound to sarcoplasmic reticulum with change in enzymic state, as deduced from ascorbate-quenching studies.
Tonomura Y, Morales M
Proc Natl Acad Sci U S A. 1974; 71(9):3687-91.
PMID: 4372632
PMC: 433841.
DOI: 10.1073/pnas.71.9.3687.
The substructure of myosin and the reaction mechanism of its adenosine triphosphatase.
Tonomura Y, Inoue A
Mol Cell Biochem. 1974; 5(3):127-43.
PMID: 4280507
DOI: 10.1007/BF01731376.
State of the calcium pump of the sarcoplasmic reticulum in compensatory hyperfunction and hypertrophy of skeletal muscle.
Panchenko L, Aliev M, MEERSON F
Bull Exp Biol Med. 1974; 77(3):272-4.
PMID: 4278285
DOI: 10.1007/BF00802477.
Allosteric regulation of cardiac sarcoplasmic reticulum Ca-ATPase: a comparative study.
Cable M, BRIGGS F
Mol Cell Biochem. 1988; 82(1-2):29-36.
PMID: 2972911
DOI: 10.1007/BF00242512.
Interactions of lipids and proteins: some general principles.
Lee A
J Bioenerg Biomembr. 1987; 19(6):581-603.
PMID: 2961735
DOI: 10.1007/BF00762298.
Mechanistic origin of the kinetic cooperativity for the ATPase activity of sarcoplasmic reticulum.
Teruel J, Tudela J, Garcia Carmona F, Gomez Fernandez J, Garcia Canovas F
J Bioenerg Biomembr. 1987; 19(4):383-96.
PMID: 2957365
DOI: 10.1007/BF00768541.