Betermier M, Klobutcher L, Orias E
Microbiol Mol Biol Rev. 2023; 87(4):e0018422.
PMID: 38009915
PMC: 10732028.
DOI: 10.1128/mmbr.00184-22.
Timoshevskaya N, Eskut K, Timoshevskiy V, Robb S, Holt C, Hess J
Cell Rep. 2023; 42(3):112263.
PMID: 36930644
PMC: 10166183.
DOI: 10.1016/j.celrep.2023.112263.
Janetopoulos C, Aufderheide K
Microorganisms. 2023; 11(2).
PMID: 36838383
PMC: 9962563.
DOI: 10.3390/microorganisms11020418.
Smith J, Timoshevskiy V, Saraceno C
Annu Rev Anim Biosci. 2020; 9:173-201.
PMID: 32986476
PMC: 8715500.
DOI: 10.1146/annurev-animal-061220-023220.
Rzeszutek I, Maurer-Alcala X, Nowacki M
Cell Mol Life Sci. 2020; 77(22):4615-4629.
PMID: 32462406
PMC: 7599177.
DOI: 10.1007/s00018-020-03555-2.
Rearrangement of macronucleus chromosomes correspond to TAD-like structures of micronucleus chromosomes in .
Luo Z, Hu T, Jiang H, Wang R, Xu Q, Zhang S
Genome Res. 2020; 30(3):406-414.
PMID: 32165395
PMC: 7111529.
DOI: 10.1101/gr.241687.118.
Improved Method for DNA Extraction and Purification from .
El Maaiden E, El Kharrassi Y, Essamadi A, Moustaid K, Nasser B
Methods Protoc. 2019; 2(2).
PMID: 31164619
PMC: 6632170.
DOI: 10.3390/mps2020040.
Setting boundaries for genome-wide heterochromatic DNA deletions through flanking inverted repeats in Tetrahymena thermophila.
Lin C, Chao J, Tsai H, Chalker D, Yao M
Nucleic Acids Res. 2019; 47(10):5181-5192.
PMID: 30918956
PMC: 6547420.
DOI: 10.1093/nar/gkz209.
Nuclear Features of the Heterotrich Ciliate Blepharisma americanum: Genomic Amplification, Life Cycle, and Nuclear Inclusion.
Wancura M, Yan Y, Katz L, Maurer-Alcala X
J Eukaryot Microbiol. 2017; 65(1):4-11.
PMID: 28460157
PMC: 5989012.
DOI: 10.1111/jeu.12422.
Structure of the germline genome of and relationship to the massively rearranged somatic genome.
Hamilton E, Kapusta A, Huvos P, Bidwell S, Zafar N, Tang H
Elife. 2016; 5.
PMID: 27892853
PMC: 5182062.
DOI: 10.7554/eLife.19090.
Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools.
Ruehle M, Orias E, Pearson C
Genetics. 2016; 203(2):649-65.
PMID: 27270699
PMC: 4896184.
DOI: 10.1534/genetics.114.169748.
Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena.
Xu J, Yuan Y, Liang A, Wang W
Sci Rep. 2015; 5:10243.
PMID: 25989344
PMC: 4437310.
DOI: 10.1038/srep10243.
Programmed DNA elimination in multicellular organisms.
Wang J, Davis R
Curr Opin Genet Dev. 2014; 27:26-34.
PMID: 24886889
PMC: 4125452.
DOI: 10.1016/j.gde.2014.03.012.
LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation.
Shieh A, Chalker D
PLoS One. 2013; 8(9):e75337.
PMID: 24069402
PMC: 3775806.
DOI: 10.1371/journal.pone.0075337.
Genomes on the edge: programmed genome instability in ciliates.
Bracht J, Fang W, Goldman A, Dolzhenko E, Stein E, Landweber L
Cell. 2013; 152(3):406-16.
PMID: 23374338
PMC: 3725814.
DOI: 10.1016/j.cell.2013.01.005.
De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection.
Gartner S, Liu Y, Natesan S
PLoS One. 2012; 7(7):e40139.
PMID: 22911696
PMC: 3399863.
DOI: 10.1371/journal.pone.0040139.
Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena.
Schoeberl U, Kurth H, Noto T, Mochizuki K
Genes Dev. 2012; 26(15):1729-42.
PMID: 22855833
PMC: 3418590.
DOI: 10.1101/gad.196493.112.
Genetic consequences of programmed genome rearrangement.
Smith J, Baker C, Eichler E, Amemiya C
Curr Biol. 2012; 22(16):1524-9.
PMID: 22818913
PMC: 3427415.
DOI: 10.1016/j.cub.2012.06.028.
An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila.
Lin I, Chao J, Yao M
Mol Biol Cell. 2012; 23(11):2213-25.
PMID: 22513090
PMC: 3364183.
DOI: 10.1091/mbc.E11-11-0952.
Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage.
Cassidy-Hanley D
Methods Cell Biol. 2012; 109:237-76.
PMID: 22444147
PMC: 3608402.
DOI: 10.1016/B978-0-12-385967-9.00008-6.