Cleworth T, Allum J, Nielsen E, Carpenter M
Brain Sci. 2023; 13(11).
PMID: 38002463
PMC: 10669334.
DOI: 10.3390/brainsci13111502.
Ruhl M, Kimmel R, Ertl M, Conrad J, Eulenburg P
Cerebellum. 2022; 22(2):194-205.
PMID: 35212978
PMC: 9985569.
DOI: 10.1007/s12311-022-01374-8.
Karmali F
Prog Brain Res. 2019; 248:269-276.
PMID: 31239137
PMC: 9103412.
DOI: 10.1016/bs.pbr.2019.04.038.
Bos J, Lubeck A, Vente P
J Vestib Res. 2018; 27(5-6):251-263.
PMID: 29400688
PMC: 9249307.
DOI: 10.3233/VES-170630.
Robins R, Hollands M
Exp Brain Res. 2017; 235(12):3593-3603.
PMID: 28884336
DOI: 10.1007/s00221-017-5079-0.
Coding of Velocity Storage in the Vestibular Nuclei.
Yakushin S, Raphan T, Cohen B
Front Neurol. 2017; 8:386.
PMID: 28861030
PMC: 5561016.
DOI: 10.3389/fneur.2017.00386.
Dynamics of individual perceptual decisions.
Merfeld D, Clark T, Lu Y, Karmali F
J Neurophysiol. 2015; 115(1):39-59.
PMID: 26467513
PMC: 4760478.
DOI: 10.1152/jn.00225.2015.
Human discrimination of head-centred visual-inertial yaw rotations.
Nesti A, Beykirch K, Pretto P, Bulthoff H
Exp Brain Res. 2015; 233(12):3553-64.
PMID: 26319547
PMC: 4646930.
DOI: 10.1007/s00221-015-4426-2.
Self-motion sensitivity to visual yaw rotations in humans.
Nesti A, Beykirch K, Pretto P, Bulthoff H
Exp Brain Res. 2014; 233(3):861-9.
PMID: 25511163
PMC: 4318989.
DOI: 10.1007/s00221-014-4161-0.
Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways.
Ventre-Dominey J
Front Integr Neurosci. 2014; 8:53.
PMID: 25071481
PMC: 4082317.
DOI: 10.3389/fnint.2014.00053.
Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish.
Ward B, Tan G, Roberts D, Della Santina C, Zee D, Carey J
PLoS One. 2014; 9(3):e92109.
PMID: 24647586
PMC: 3960171.
DOI: 10.1371/journal.pone.0092109.
Human yaw rotation aftereffects with brief duration rotations are inconsistent with velocity storage.
Coniglio A, Crane B
J Assoc Res Otolaryngol. 2014; 15(2):305-17.
PMID: 24408345
PMC: 3946141.
DOI: 10.1007/s10162-013-0438-4.
Visual and vestibular perceptual thresholds each demonstrate better precision at specific frequencies and also exhibit optimal integration.
Karmali F, Lim K, Merfeld D
J Neurophysiol. 2013; 111(12):2393-403.
PMID: 24371292
PMC: 4044428.
DOI: 10.1152/jn.00332.2013.
Velocity storage mechanism in zebrafish larvae.
Chen C, Bockisch C, Bertolini G, Olasagasti I, Neuhauss S, Weber K
J Physiol. 2013; 592(1):203-14.
PMID: 24218543
PMC: 3903360.
DOI: 10.1113/jphysiol.2013.258640.
Automatic classification and robust identification of vestibulo-ocular reflex responses: from theory to practice: introducing GNL-HybELS.
Ghoreyshi A, Galiana H
J Comput Neurosci. 2011; 31(2):347-68.
PMID: 21249516
DOI: 10.1007/s10827-010-0307-7.
Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory.
Fetsch C, DeAngelis G, Angelaki D
Eur J Neurosci. 2010; 31(10):1721-9.
PMID: 20584175
PMC: 3108057.
DOI: 10.1111/j.1460-9568.2010.07207.x.
Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency.
Grabherr L, Nicoucar K, Mast F, Merfeld D
Exp Brain Res. 2008; 186(4):677-81.
PMID: 18350283
DOI: 10.1007/s00221-008-1350-8.
Fluid-particle dynamics in canalithiasis.
Obrist D, Hegemann S
J R Soc Interface. 2008; 5(27):1215-29.
PMID: 18319210
PMC: 3226995.
DOI: 10.1098/rsif.2008.0047.
Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator.
Green A, Angelaki D
J Neurosci. 2003; 23(28):9265-75.
PMID: 14561853
PMC: 6740579.
Vestibular, optokinetic, and cognitive contribution to the guidance of passive self-rotation toward instructed targets.
Jurgens R, Nasios G, Becker W
Exp Brain Res. 2003; 151(1):90-107.
PMID: 12740727
DOI: 10.1007/s00221-003-1472-y.