» Articles » PMID: 4078499

The Behavior of Rings of Coupled Oscillators

Overview
Journal J Math Biol
Date 1985 Jan 1
PMID 4078499
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Coupled oscillators in a ring are studied using perturbation and numerical methods. Stability of waves with nearest neighbor weak coupling is shown for a class of simple oscillators. Linkens' model for colorectal activity is analyzed and several stable modes are found. Stability of waves with general (non nearest neighbor coupling) is determined and comparisons to the nearest neighbor case are made. Approximate solutions to a ring with inhomogeneities are compared with numerical simulations.

Citing Articles

Multistability and anomalies in oscillator models of lossy power grids.

Delabays R, Jafarpour S, Bullo F Nat Commun. 2022; 13(1):5238.

PMID: 36068214 PMC: 9448753. DOI: 10.1038/s41467-022-32931-8.


Robust phase-waves in chains of half-center oscillators.

Zhang C, Lewis T J Math Biol. 2016; 74(7):1627-1656.

PMID: 27738761 DOI: 10.1007/s00285-016-1066-5.


Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.

Ashwin P, Coombes S, Nicks R J Math Neurosci. 2016; 6(1):2.

PMID: 26739133 PMC: 4703605. DOI: 10.1186/s13408-015-0033-6.


A computational role for bistability and traveling waves in motor cortex.

Heitmann S, Gong P, Breakspear M Front Comput Neurosci. 2012; 6:67.

PMID: 22973223 PMC: 3438483. DOI: 10.3389/fncom.2012.00067.


Dynamics from a time series: can we extract the phase resetting curve from a time series?.

Oprisan S, Thirumalai V, Canavier C Biophys J. 2003; 84(5):2919-28.

PMID: 12719224 PMC: 1302855. DOI: 10.1016/S0006-3495(03)70019-8.


References
1.
Linkens D . The stability of entrainment conditions for RLC coupled Van der Pol oscillators used as a model for intestinal electrical rhythms. Bull Math Biol. 1977; 39(3):359-72. DOI: 10.1007/BF02462915. View

2.
Nelsen T, Becker J . Simulation of the electrical and mechanical gradient of the small intestine. Am J Physiol. 1968; 214(4):749-57. DOI: 10.1152/ajplegacy.1968.214.4.749. View

3.
Torre V . Synchronization of non-linear biochemical oscillators coupled by diffusion. Biol Cybern. 1975; 17(3):137-44. DOI: 10.1007/BF00364162. View

4.
Traub R, Wong R . Cellular mechanism of neuronal synchronization in epilepsy. Science. 1982; 216(4547):745-7. DOI: 10.1126/science.7079735. View

5.
Amari S . Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern. 1977; 27(2):77-87. DOI: 10.1007/BF00337259. View