6.
Hausdorff J
. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci. 2007; 26(4):555-89.
PMC: 2267927.
DOI: 10.1016/j.humov.2007.05.003.
View
7.
Alam M, Garg A, Munia T, Fazel-Rezai R, Tavakolian K
. Vertical ground reaction force marker for Parkinson's disease. PLoS One. 2017; 12(5):e0175951.
PMC: 5426596.
DOI: 10.1371/journal.pone.0175951.
View
8.
Khera P, Kumar N
. Novel machine learning-based hybrid strategy for severity assessment of Parkinson's disorders. Med Biol Eng Comput. 2022; 60(3):811-828.
DOI: 10.1007/s11517-022-02518-y.
View
9.
Chaudhuri K, Bhidayasiri R, van Laar T
. Unmet needs in Parkinson's disease: New horizons in a changing landscape. Parkinsonism Relat Disord. 2016; 33 Suppl 1:S2-S8.
DOI: 10.1016/j.parkreldis.2016.11.018.
View
10.
Guo Y, Storm F, Zhao Y, Billings S, Pavic A, Mazza C
. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors. Sensors (Basel). 2017; 17(10).
PMC: 5677265.
DOI: 10.3390/s17102181.
View
11.
Penn I, Sung W, Lin P, Wang J, Chuang E, Chuang T
. Speed and temporal adaptations during nonmotorized treadmill walking in Parkinson disease and nondisabled individuals. Int J Rehabil Res. 2018; 42(2):126-132.
DOI: 10.1097/MRR.0000000000000334.
View
12.
Andriacchi T, Ogle J, Galante J
. Walking speed as a basis for normal and abnormal gait measurements. J Biomech. 1977; 10(4):261-8.
DOI: 10.1016/0021-9290(77)90049-5.
View
13.
Tomida K, Ohtsuka K, Teranishi T, Ogawa H, Takai M, Suzuki A
. Effects of change in walking speed on time-distance parameters in post-stroke hemiplegic gait. Fujita Med J. 2022; 8(4):121-126.
PMC: 9673078.
DOI: 10.20407/fmj.2021-016.
View
14.
Abdullah M, Hulleck A, Katmah R, Khalaf K, El-Rich M
. Multibody dynamics-based musculoskeletal modeling for gait analysis: a systematic review. J Neuroeng Rehabil. 2024; 21(1):178.
PMC: 11452939.
DOI: 10.1186/s12984-024-01458-y.
View
15.
Dos Santos A, Nakagawa T, Lessi G, Luz B, Matsuo H, Nakashima G
. Effects of three gait retraining techniques in runners with patellofemoral pain. Phys Ther Sport. 2019; 36:92-100.
DOI: 10.1016/j.ptsp.2019.01.006.
View
16.
Setiawan F, Lin C
. Identification of Neurodegenerative Diseases Based on Vertical Ground Reaction Force Classification Using Time-Frequency Spectrogram and Deep Learning Neural Network Features. Brain Sci. 2021; 11(7).
PMC: 8303978.
DOI: 10.3390/brainsci11070902.
View
17.
Pham T
. Texture Classification and Visualization of Time Series of Gait Dynamics in Patients With Neuro-Degenerative Diseases. IEEE Trans Neural Syst Rehabil Eng. 2017; 26(1):188-196.
DOI: 10.1109/TNSRE.2017.2732448.
View
18.
Syam V, Safal S, Bhutia O, Singh A, Giri D, Bhandari S
. A non-invasive method for prediction of neurodegenerative diseases using gait signal features. Procedia Comput Sci. 2023; 218:1529-1541.
PMC: 10373219.
DOI: 10.1016/j.procs.2023.01.131.
View
19.
Nguyen Q, Liu A, Lin C
. Development of a Neurodegenerative Disease Gait Classification Algorithm Using Multiscale Sample Entropy and Machine Learning Classifiers. Entropy (Basel). 2020; 22(12).
PMC: 7759974.
DOI: 10.3390/e22121340.
View
20.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R
. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20.
DOI: 10.1161/01.cir.101.23.e215.
View