» Articles » PMID: 40086705

Predictive Analysis of the Impact of Probiotic Administration During Pregnancy on the Functional Pathways of the Gut Microbiome in Healthy Infants Based on 16S RRNA Gene Sequencing

Overview
Journal Gene
Specialty Molecular Biology
Date 2025 Mar 14
PMID 40086705
Authors
Affiliations
Soon will be listed here.
Abstract

Maternal probiotic supplementation altered the microbial composition in infants' gut, yet its effect on the functional pathways of the microbiota remains unclear. This study aimed to explore the potential impact of maternal probiotic intake on the predicted functional pathways of the gut microbiome in healthy infants. A total of 24 pregnant women were randomly allocated to either the control group or the probiotic group. The women in the probiotic group began receiving probiotics at the 32nd week of pregnancy and continued until delivery. Meconium and fecal samples were collected from infants at birth, as well as on the 3rd day, 14th day, and 6th month after birth. The functional characteristics of the microbial community were inferred using 16S rRNA gene analysis, processed with PICRUSt software, and cross-referenced with the KEGG database. The probiotic group had lower levels of Actinobacteria and Bacteroidetes, while Bifidobacterium growth was notably increased in the infant gut microbiota. At day 0 postpartum, the control group exhibited higher levels of Prevotellaceae compared to the probiotic group (P < 0.05). However, no significant differences were found by day 3. At day 14, the control group exhibited higher levels of Bacteroidaceae and Bacteroides, while Bacteroides_thetaiotaomicron was more abundant in the probiotic group (P < 0.05). By 6 months, the control group showed a higher abundance of Firmicutes (P < 0.05). On day 0 postpartum, maternal probiotic consumption increased the Environmental information processing pathway at KEGG Level 1, and increased Energy metabolism, Metabolism of cofactors and vitamins, and Cell growth and death pathways at KEGG Level 2. It also increased Histidine metabolism, One carbon pool by folate, and Folate biosynthesis at KEGG Level 3. No changes were observed in the infant gut microbiota's functional metabolic pathways at 3 days postpartum. At 14 days postpartum, probiotics reduced Lipid metabolism pathways at KEGG Level 2 and the Citrate cycle at KEGG Level 3. At 6 months postpartum, probiotics decreased Carbohydrate metabolism pathways at KEGG Level 2. Our findings suggest that probiotic supplementation during pregnancy affects the functional metabolism of the gut microbiota in healthy infants. This, in turn, may influence the development of the infant's immune system, metabolism, and overall health by modifying the gut microbial environment.