6.
Eliot A, Kirsch J
. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004; 73:383-415.
DOI: 10.1146/annurev.biochem.73.011303.074021.
View
7.
Du Y, Ryan K
. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep. 2018; 36(3):430-457.
DOI: 10.1039/c8np00049b.
View
8.
Manandhar M, Cronan J
. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol. 2017; 84(1).
PMC: 5734022.
DOI: 10.1128/AEM.02084-17.
View
9.
Harrison P, Dunn T, Campopiano D
. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep. 2018; 35(9):921-954.
PMC: 6148460.
DOI: 10.1039/c8np00019k.
View
10.
Zaman Z, Jordan P, Akhtar M
. Mechanism and stereochemistry of the 5-aminolaevulinate synthetase reaction. Biochem J. 1973; 135(2):257-63.
PMC: 1165818.
DOI: 10.1042/bj1350257.
View
11.
Gong J, Hunter G, Ferreira G
. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5'-phosphate cofactor. Biochemistry. 1998; 37(10):3509-17.
DOI: 10.1021/bi9719298.
View
12.
Astner I, Schulze J, van den Heuvel J, Jahn D, Schubert W, Heinz D
. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J. 2005; 24(18):3166-77.
PMC: 1224682.
DOI: 10.1038/sj.emboj.7600792.
View
13.
Alexeev D, Alexeeva M, Baxter R, Campopiano D, Webster S, Sawyer L
. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol. 1998; 284(2):401-19.
DOI: 10.1006/jmbi.1998.2086.
View
14.
Ikushiro H, Hayashi H, KAGAMIYAMA H
. A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction. J Biol Chem. 2001; 276(21):18249-56.
DOI: 10.1074/jbc.M101550200.
View
15.
Yard B, Carter L, Johnson K, Overton I, Dorward M, Liu H
. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol. 2007; 370(5):870-86.
DOI: 10.1016/j.jmb.2007.04.086.
View
16.
Ikushiro H, Islam M, Okamoto A, Hoseki J, Murakawa T, Fujii S
. Structural insights into the enzymatic mechanism of serine palmitoyltransferase from Sphingobacterium multivorum. J Biochem. 2009; 146(4):549-62.
DOI: 10.1093/jb/mvp100.
View
17.
Shiraiwa Y, Ikushiro H, Hayashi H
. Multifunctional role of His159in the catalytic reaction of serine palmitoyltransferase. J Biol Chem. 2009; 284(23):15487-95.
PMC: 2786316.
DOI: 10.1074/jbc.M808916200.
View
18.
Ikushiro H, Fujii S, Shiraiwa Y, Hayashi H
. Acceleration of the substrate Calpha deprotonation by an analogue of the second substrate palmitoyl-CoA in Serine Palmitoyltransferase. J Biol Chem. 2008; 283(12):7542-53.
DOI: 10.1074/jbc.M706874200.
View
19.
Raman M, Johnson K, Yard B, Lowther J, Carter L, Naismith J
. The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics. J Biol Chem. 2009; 284(25):17328-17339.
PMC: 2719368.
DOI: 10.1074/jbc.M109.008680.
View
20.
Schmidt A, Sivaraman J, Li Y, Larocque R, Barbosa J, Smith C
. Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli complexed with a PLP-substrate intermediate: inferred reaction mechanism. Biochemistry. 2001; 40(17):5151-60.
DOI: 10.1021/bi002204y.
View