6.
Gaur R, Yadav K, Verma R, Yadav N, Bhakuni R
. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine. 2013; 21(4):415-22.
DOI: 10.1016/j.phymed.2013.10.015.
View
7.
Zhai K, Duan H, Cui C, Cao Y, Si J, Yang H
. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. J Agric Food Chem. 2019; 67(10):2856-2864.
DOI: 10.1021/acs.jafc.9b00185.
View
8.
Duan L, Harris A, Su C, Zhang Z, Arslan E, Ertugrul K
. Chloroplast Phylogenomics Reveals the Intercontinental Biogeographic History of the Liquorice Genus (Leguminosae: ). Front Plant Sci. 2020; 11:793.
PMC: 7318913.
DOI: 10.3389/fpls.2020.00793.
View
9.
Mochida K, Sakurai T, Seki H, Yoshida T, Takahagi K, Sawai S
. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 2016; 89(2):181-194.
DOI: 10.1111/tpj.13385.
View
10.
Rai A, Hirakawa H, Rai M, Shimizu Y, Shirasawa K, Kikuchi S
. Chromosome-scale genome assembly of Glycyrrhiza uralensis revealed metabolic gene cluster centred specialized metabolites biosynthesis. DNA Res. 2022; 29(6).
PMC: 9763095.
DOI: 10.1093/dnares/dsac043.
View
11.
Binder B
. Ethylene signaling in plants. J Biol Chem. 2020; 295(22):7710-7725.
PMC: 7261785.
DOI: 10.1074/jbc.REV120.010854.
View
12.
Yan B, Hou J, Li W, Luo L, Ye M, Zhao Z
. A review on the plant resources of important medicinal licorice. J Ethnopharmacol. 2022; 301:115823.
DOI: 10.1016/j.jep.2022.115823.
View
13.
Bayer P, Golicz A, Scheben A, Batley J, Edwards D
. Plant pan-genomes are the new reference. Nat Plants. 2020; 6(8):914-920.
DOI: 10.1038/s41477-020-0733-0.
View
14.
Khan A, Garg V, Roorkiwal M, Golicz A, Edwards D, Varshney R
. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends Plant Sci. 2019; 25(2):148-158.
PMC: 6988109.
DOI: 10.1016/j.tplants.2019.10.012.
View
15.
Jayakodi M, Schreiber M, Stein N, Mascher M
. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Res. 2021; 28(1).
PMC: 7934568.
DOI: 10.1093/dnares/dsaa030.
View
16.
He Q, Tang S, Zhi H, Chen J, Zhang J, Liang H
. A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet. 2023; 55(7):1232-1242.
PMC: 10335933.
DOI: 10.1038/s41588-023-01423-w.
View
17.
Shi J, Tian Z, Lai J, Huang X
. Plant pan-genomics and its applications. Mol Plant. 2022; 16(1):168-186.
DOI: 10.1016/j.molp.2022.12.009.
View
18.
Folk R, Soltis P, Soltis D, Guralnick R
. New prospects in the detection and comparative analysis of hybridization in the tree of life. Am J Bot. 2018; 105(3):364-375.
DOI: 10.1002/ajb2.1018.
View
19.
Stull G, Pham K, Soltis P, Soltis D
. Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant J. 2023; 114(4):743-766.
DOI: 10.1111/tpj.16142.
View
20.
Etcheverry A, Aleman M, Fleming T
. Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Ann Bot. 2008; 102(3):305-16.
PMC: 2701803.
DOI: 10.1093/aob/mcn106.
View