6.
Paradis E, Schliep K
. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018; 35(3):526-528.
DOI: 10.1093/bioinformatics/bty633.
View
7.
Mannion P, Upchurch P, Carrano M, Barrett P
. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol Rev Camb Philos Soc. 2010; 86(1):157-81.
DOI: 10.1111/j.1469-185X.2010.00139.x.
View
8.
cerny D, Simonoff A
. Statistical evaluation of character support reveals the instability of higher-level dinosaur phylogeny. Sci Rep. 2023; 13(1):9273.
PMC: 10247814.
DOI: 10.1038/s41598-023-35784-3.
View
9.
Sloan R, Rigby Jr J, VAN Valen L, Gabriel D
. Gradual dinosaur extinction and simultaneous ungulate radiation in the hell creek formation. Science. 1986; 232(4750):629-33.
DOI: 10.1126/science.232.4750.629.
View
10.
Close R, Benson R, Alroy J, Behrensmeyer A, Benito J, Carrano M
. Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale. Nat Ecol Evol. 2019; 3(4):590-597.
DOI: 10.1038/s41559-019-0811-8.
View
11.
Han F, Wang Q, Wang H, Zhu X, Zhou X, Wang Z
. Low dinosaur biodiversity in central China 2 million years prior to the end-Cretaceous mass extinction. Proc Natl Acad Sci U S A. 2022; 119(39):e2211234119.
PMC: 9522366.
DOI: 10.1073/pnas.2211234119.
View
12.
Sakamoto M, Benton M, Venditti C
. Dinosaurs in decline tens of millions of years before their final extinction. Proc Natl Acad Sci U S A. 2016; 113(18):5036-40.
PMC: 4983840.
DOI: 10.1073/pnas.1521478113.
View
13.
cerny D, Madzia D, Slater G
. Empirical and Methodological Challenges to the Model-Based Inference of Diversification Rates in Extinct Clades. Syst Biol. 2021; 71(1):153-171.
DOI: 10.1093/sysbio/syab045.
View
14.
Chiarenza A, Farnsworth A, Mannion P, Lunt D, Valdes P, Morgan J
. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc Natl Acad Sci U S A. 2020; 117(29):17084-17093.
PMC: 7382232.
DOI: 10.1073/pnas.2006087117.
View
15.
Close R, Benson R, Upchurch P, Butler R
. Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification. Nat Commun. 2017; 8:15381.
PMC: 5458146.
DOI: 10.1038/ncomms15381.
View
16.
Marshall C, Finnegan S, Clites E, Holroyd P, Bonuso N, Cortez C
. Quantifying the dark data in museum fossil collections as palaeontology undergoes a second digital revolution. Biol Lett. 2018; 14(9).
PMC: 6170754.
DOI: 10.1098/rsbl.2018.0431.
View
17.
Bouckaert R, Vaughan T, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina A
. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019; 15(4):e1006650.
PMC: 6472827.
DOI: 10.1371/journal.pcbi.1006650.
View
18.
Andreoletti J, Zwaans A, Warnock R, Aguirre-Fernandez G, Barido-Sottani J, Gupta A
. The Occurrence Birth-Death Process for Combined-Evidence Analysis in Macroevolution and Epidemiology. Syst Biol. 2022; 71(6):1440-1452.
PMC: 9558841.
DOI: 10.1093/sysbio/syac037.
View
19.
Alvarez L, Alvarez W, Asaro F, Michel H
. Extraterrestrial cause for the cretaceous-tertiary extinction. Science. 1980; 208(4448):1095-108.
DOI: 10.1126/science.208.4448.1095.
View
20.
Legried B, Terhorst J
. A class of identifiable phylogenetic birth-death models. Proc Natl Acad Sci U S A. 2022; 119(35):e2119513119.
PMC: 9436344.
DOI: 10.1073/pnas.2119513119.
View