6.
Litchfield J
. Microbiological production of lactic acid. Adv Appl Microbiol. 1996; 42:45-95.
DOI: 10.1016/s0065-2164(08)70372-1.
View
7.
Fonseca G, Heinzle E, Wittmann C, Gombert A
. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol. 2008; 79(3):339-54.
DOI: 10.1007/s00253-008-1458-6.
View
8.
Soares-Silva I, Schuller D, Andrade R, Baltazar F, Cassio F, Casal M
. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris. Biochem J. 2003; 376(Pt 3):781-7.
PMC: 1223809.
DOI: 10.1042/BJ20031180.
View
9.
Maas R, Bakker R, Eggink G, Weusthuis R
. Lactic acid production from xylose by the fungus Rhizopus oryzae. Appl Microbiol Biotechnol. 2006; 72(5):861-8.
DOI: 10.1007/s00253-006-0379-5.
View
10.
Yankov D
. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem. 2022; 10:823005.
PMC: 8931288.
DOI: 10.3389/fchem.2022.823005.
View
11.
Baek S, Kwon E, Kim Y, Hahn J
. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2015; 100(6):2737-48.
DOI: 10.1007/s00253-015-7174-0.
View
12.
Jang B, Ju Y, Jeong D, Jung S, Kim C, Chung Y
. l-Lactic Acid Production Using Engineered with Improved Organic Acid Tolerance. J Fungi (Basel). 2021; 7(11).
PMC: 8624227.
DOI: 10.3390/jof7110928.
View
13.
Branduardi P, Sauer M, De Gioia L, Zampella G, Valli M, Mattanovich D
. Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microb Cell Fact. 2006; 5:4.
PMC: 1373645.
DOI: 10.1186/1475-2859-5-4.
View
14.
Kumar L, Yellapu S, Tyagi R, Zhang X
. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresour Technol. 2019; 293:122155.
DOI: 10.1016/j.biortech.2019.122155.
View
15.
Murariu M, Dubois P
. PLA composites: From production to properties. Adv Drug Deliv Rev. 2016; 107:17-46.
DOI: 10.1016/j.addr.2016.04.003.
View
16.
Porro D, Bianchi M, Brambilla L, Menghini R, Bolzani D, Carrera V
. Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol. 1999; 65(9):4211-5.
PMC: 99761.
DOI: 10.1128/AEM.65.9.4211-4215.1999.
View
17.
Lee J, Kang C, Lee S, Park Y, Cho K
. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Biotechnol Bioeng. 2014; 112(4):751-8.
DOI: 10.1002/bit.25488.
View
18.
Turner T, Lane S, Jayakody L, Zhang G, Kim H, Cho W
. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase. FEMS Yeast Res. 2019; 19(6).
DOI: 10.1093/femsyr/foz050.
View
19.
Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K
. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Biosci Biotechnol Biochem. 2006; 70(5):1148-53.
DOI: 10.1271/bbb.70.1148.
View
20.
Petersen J, Jensen L
. Phthalates and food-contact materials: enforcing the 2008 European Union plastics legislation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010; 27(11):1608-16.
DOI: 10.1080/19440049.2010.501825.
View