Analysis of Population Structure and Selective Signatures for Milk Production Traits in Xinjiang Brown Cattle and Chinese Simmental Cattle
Overview
Chemistry
Molecular Biology
Authors
Affiliations
This study aims to elucidate the population structure and genetic diversity of Xinjiang brown cattle (XJBC) and Chinese Simmental cattle (CSC) while conducting genome-wide selective signatures analyses to identify selected genes associated with milk production traits in both breeds. Based on whole-genome resequencing technology, whole-genome single nucleotide polymorphisms (SNPs) of 83 Xinjiang brown cattle and 80 Chinese Simmental cattle were detected to resolve the genetic diversity and genetic structure of the two populations, whole-genome selective elimination analysis was performed for the two breeds of cattle using the fixation index () and nucleotide diversity (θπ ratio), and enrichment analysis was performed to explore their biological functions further. Both breeds exhibited relatively rich genetic diversity, with the Chinese Simmental cattle demonstrating higher genetic diversity than Xinjiang brown cattle. The IBS and G matrix results indicated that most individuals in the two populations were farther apart from each other. The PCA and neighbor-joining tree revealed no hybridization between the two breeds, but there was a certain degree of genetic differences among the individuals in the two breeds. Population structure analysis revealed that the optimal number of ancestors was three when K = 3. This resulted in clear genetic differentiation between the two populations, with only a few individuals having one ancestor and the majority having two or three common ancestors. A combined analysis of and θπ was used to screen 112 candidate genes related to milk production traits in Xinjiang brown cattle and Chinese Simmental cattle. This study used genome-wide SNP markers to reveal the genetic diversity, population structure, and selection characteristics of two breeds. This study also screened candidate genes related to milk production traits, providing a theoretical basis for conserving genetic resources and improving genetic selection for milk production traits in Xinjiang brown cattle and Chinese Simmental cattle.