6.
Andersson S, Bathula D, Iliadis S, Walter M, Skalkidou A
. Predicting women with depressive symptoms postpartum with machine learning methods. Sci Rep. 2021; 11(1):7877.
PMC: 8041863.
DOI: 10.1038/s41598-021-86368-y.
View
7.
Davalos D, Yadon C, Tregellas H
. Untreated prenatal maternal depression and the potential risks to offspring: a review. Arch Womens Ment Health. 2012; 15(1):1-14.
DOI: 10.1007/s00737-011-0251-1.
View
8.
Huang Y, Alvernaz S, Kim S, Maki P, Dai Y, Penalver Bernabe B
. Predicting Prenatal Depression and Assessing Model Bias Using Machine Learning Models. Biol Psychiatry Glob Open Sci. 2024; 4(6):100376.
PMC: 11470166.
DOI: 10.1016/j.bpsgos.2024.100376.
View
9.
Qasrawi R, Amro M, VicunaPolo S, Al-Halawa D, Agha H, Abu Seir R
. Machine learning techniques for predicting depression and anxiety in pregnant and postpartum women during the COVID-19 pandemic: a cross-sectional regional study. F1000Res. 2022; 11:390.
PMC: 9445566.
DOI: 10.12688/f1000research.110090.1.
View
10.
Javed F, Gilani S, Latif S, Waris A, Jamil M, Waqas A
. Predicting Risk of Antenatal Depression and Anxiety Using Multi-Layer Perceptrons and Support Vector Machines. J Pers Med. 2021; 11(3).
PMC: 8000443.
DOI: 10.3390/jpm11030199.
View
11.
Eastwood J, Ogbo F, Hendry A, Noble J, Page A
. The Impact of Antenatal Depression on Perinatal Outcomes in Australian Women. PLoS One. 2017; 12(1):e0169907.
PMC: 5241141.
DOI: 10.1371/journal.pone.0169907.
View
12.
Nasreen H, Kabir Z, Forsell Y, Edhborg M
. Prevalence and associated factors of depressive and anxiety symptoms during pregnancy: a population based study in rural Bangladesh. BMC Womens Health. 2011; 11:22.
PMC: 3117808.
DOI: 10.1186/1472-6874-11-22.
View
13.
T S Lee D, Chan S, Sahota D, Yip A, Tsui M, Chung T
. A prevalence study of antenatal depression among Chinese women. J Affect Disord. 2004; 82(1):93-9.
DOI: 10.1016/j.jad.2003.10.003.
View
14.
Kuehner C
. Why is depression more common among women than among men?. Lancet Psychiatry. 2016; 4(2):146-158.
DOI: 10.1016/S2215-0366(16)30263-2.
View
15.
Liu H, Dai A, Zhou Z, Xu X, Gao K, Li Q
. An optimization for postpartum depression risk assessment and preventive intervention strategy based machine learning approaches. J Affect Disord. 2023; 328:163-174.
DOI: 10.1016/j.jad.2023.02.028.
View
16.
Preis H, Djuric P, Ajirak M, Chen T, Mane V, Garry D
. Applying machine learning methods to psychosocial screening data to improve identification of prenatal depression: Implications for clinical practice and research. Arch Womens Ment Health. 2022; 25(5):965-973.
PMC: 9709634.
DOI: 10.1007/s00737-022-01259-z.
View
17.
Rabinowitz E, Kutash L, Richeson A, Sayer M, Samii M, Delahanty D
. Depression, anxiety, and stress in pregnancy and postpartum: A longitudinal study during the COVID-19 pandemic. Midwifery. 2023; 121:103655.
PMC: 10023202.
DOI: 10.1016/j.midw.2023.103655.
View
18.
Sam A, Boostani R, Hashempour S, Taghavi M, Sanei S
. Depression Identification Using EEG Signals via a Hybrid of LSTM and Spiking Neural Networks. IEEE Trans Neural Syst Rehabil Eng. 2023; 31:4725-4737.
DOI: 10.1109/TNSRE.2023.3336467.
View
19.
Zegeye A, Alebel A, Gebrie A, Tesfaye B, Belay Y, Adane F
. Prevalence and determinants of antenatal depression among pregnant women in Ethiopia: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2018; 18(1):462.
PMC: 6264030.
DOI: 10.1186/s12884-018-2101-x.
View
20.
Shin D, Lee K, Adeluwa T, Hur J
. Machine Learning-Based Predictive Modeling of Postpartum Depression. J Clin Med. 2020; 9(9).
PMC: 7564708.
DOI: 10.3390/jcm9092899.
View