6.
Wu Q, Shaikh M, Meymand E, Zhang B, Luk K, Trojanowski J
. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol. 2020; 140(6):831-849.
PMC: 8030660.
DOI: 10.1007/s00401-020-02227-6.
View
7.
Jones C, Dalli J, Dimisko L, Wong E, Serhan C, Irimia D
. Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proc Natl Acad Sci U S A. 2012; 109(50):20560-5.
PMC: 3528552.
DOI: 10.1073/pnas.1210269109.
View
8.
Erny D, Hrabe de Angelis A, Jaitin D, Wieghofer P, Staszewski O, David E
. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015; 18(7):965-77.
PMC: 5528863.
DOI: 10.1038/nn.4030.
View
9.
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y
. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023; 8(1):217.
PMC: 10212980.
DOI: 10.1038/s41392-023-01481-w.
View
10.
Wan J, Zhou S, Mea H, Guo Y, Ku H, Urbina B
. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev. 2022; 122(7):7142-7181.
DOI: 10.1021/acs.chemrev.1c00480.
View
11.
Wang H, Yu M, Ochani M, Amella C, Tanovic M, Susarla S
. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003; 421(6921):384-8.
DOI: 10.1038/nature01339.
View
12.
de Hoyos-Vega J, Yu X, Gonzalez-Suarez A, Chen S, Mercado-Perez A, Krueger E
. Modeling gut neuro-epithelial connections in a novel microfluidic device. Microsyst Nanoeng. 2023; 9:144.
PMC: 10643697.
DOI: 10.1038/s41378-023-00615-y.
View
13.
Laperle A, Sances S, Yucer N, Dardov V, Garcia V, Ho R
. iPSC modeling of young-onset Parkinson's disease reveals a molecular signature of disease and novel therapeutic candidates. Nat Med. 2020; 26(2):289-299.
DOI: 10.1038/s41591-019-0739-1.
View
14.
Huh D, Matthews B, Mammoto A, Montoya-Zavala M, Hsin H, Ingber D
. Reconstituting organ-level lung functions on a chip. Science. 2010; 328(5986):1662-8.
PMC: 8335790.
DOI: 10.1126/science.1188302.
View
15.
Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, De Strooper B
. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Rep. 2015; 11(8):1176-83.
DOI: 10.1016/j.celrep.2015.04.043.
View
16.
Peterson L, Artis D
. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014; 14(3):141-53.
DOI: 10.1038/nri3608.
View
17.
Shin W, Kim H
. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci U S A. 2018; 115(45):E10539-E10547.
PMC: 6233106.
DOI: 10.1073/pnas.1810819115.
View
18.
Fuchs S, Johansson S, Tjell A, Werr G, Mayr T, Tenje M
. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater Sci Eng. 2021; 7(7):2926-2948.
PMC: 8278381.
DOI: 10.1021/acsbiomaterials.0c01110.
View
19.
Peters J, Ritter R, Simasko S
. Leptin and CCK modulate complementary background conductances to depolarize cultured nodose neurons. Am J Physiol Cell Physiol. 2005; 290(2):C427-32.
DOI: 10.1152/ajpcell.00439.2005.
View
20.
Sharon G, Sampson T, Geschwind D, Mazmanian S
. The Central Nervous System and the Gut Microbiome. Cell. 2016; 167(4):915-932.
PMC: 5127403.
DOI: 10.1016/j.cell.2016.10.027.
View