6.
Poszytek K, Ciezkowska M, Sklodowska A, Drewniak L
. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production. Front Microbiol. 2016; 7:324.
PMC: 4791528.
DOI: 10.3389/fmicb.2016.00324.
View
7.
Das T, Ali F, Rahman M
. Cellulase activity of a novel bacterial strain Arthrobacter woluwensis TDS9: its application on bioconversion of paper mill sludge. J Genet Eng Biotechnol. 2022; 20(1):87.
PMC: 9203635.
DOI: 10.1186/s43141-022-00373-w.
View
8.
Irfan M, Mushtaq Q, Tabssum F, Shakir H, Qazi J
. Carboxymethyl cellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology. AMB Express. 2017; 7(1):29.
PMC: 5302012.
DOI: 10.1186/s13568-017-0331-3.
View
9.
Kapoore R, Padmaperuma G, Maneein S, Vaidyanathan S
. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol. 2021; 42(1):46-72.
DOI: 10.1080/07388551.2021.1921691.
View
10.
Pham V, Kim J, Shim J, Chang S, Chung W
. Coconut Mesocarp-Based Lignocellulosic Waste as a Substrate for Cellulase Production from High Promising Multienzyme-Producing FW2 without Pretreatments. Microorganisms. 2022; 10(2).
PMC: 8877135.
DOI: 10.3390/microorganisms10020327.
View
11.
Yi S, Tay J, Maszenan A, Tay S
. A culture-independent approach for studying microbial diversity in aerobic granules. Water Sci Technol. 2003; 47(1):283-90.
View
12.
Alrumman S, Mostafa Y, Al-Qahtani S, Taha T
. Hydrolytic Enzyme Production by Thermophilic Bacteria Isolated from Saudi Hot Springs. Open Life Sci. 2021; 13:470-480.
PMC: 7874730.
DOI: 10.1515/biol-2018-0056.
View
13.
Pandey S, Singh S, Yadav A, Nain L, Saxena A
. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem. 2013; 77(7):1474-80.
DOI: 10.1271/bbb.130121.
View
14.
Garcete L, Martinez J, Barrera D, Bonugli-Santos R, Passarini M
. Biotechnological potential of microorganisms from landfill leachate: isolation, antibiotic resistance and leachate discoloration. An Acad Bras Cienc. 2022; 94(3):e20210642.
DOI: 10.1590/0001-3765202220210642.
View
15.
Lyubetsky V, Zverkov O, Rubanov L, Seliverstov A
. Optimal Growth Temperature and Intergenic Distances in Bacteria, Archaea, and Plastids of Rhodophytic Branch. Biomed Res Int. 2020; 2020:3465380.
PMC: 6991167.
DOI: 10.1155/2020/3465380.
View
16.
Dar M, Dhole N, Xie R, Pawar K, Ullah K, Rahi P
. Valorization Potential of a Novel Bacterial Strain, RSP75, towards Lignocellulose Bioconversion: An Assessment of Symbiotic Bacteria from the Stored Grain Pest, . Microorganisms. 2021; 9(9).
PMC: 8468446.
DOI: 10.3390/microorganisms9091952.
View
17.
Aulitto M, Fusco S, Bartolucci S, Franzen C, Contursi P
. MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnol Biofuels. 2017; 10:210.
PMC: 5590179.
DOI: 10.1186/s13068-017-0896-8.
View
18.
de Paula R, Antonieto A, Nogueira K, Ribeiro L, Rocha M, Malavazi I
. Extracellular vesicles carry cellulases in the industrial fungus . Biotechnol Biofuels. 2019; 12:146.
PMC: 6570945.
DOI: 10.1186/s13068-019-1487-7.
View
19.
Chukwuma O, Rafatullah M, Tajarudin H, Ismail N
. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. Int J Environ Res Public Health. 2021; 18(11).
PMC: 8199887.
DOI: 10.3390/ijerph18116001.
View
20.
Sreena C, Sebastian D
. Augmented cellulase production by strain MU S1 using different statistical experimental designs. J Genet Eng Biotechnol. 2019; 16(1):9-16.
PMC: 6296623.
DOI: 10.1016/j.jgeb.2017.12.005.
View