6.
De Luca V, Giovannuzzi S, Capasso C, Supuran C
. Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from , a Multidrug-Resistant Bacterium. Int J Mol Sci. 2024; 25(22).
PMC: 11594608.
DOI: 10.3390/ijms252212291.
View
7.
Hassan K, Liu Q, Henderson P, Paulsen I
. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015; 6(1).
PMC: 4337561.
DOI: 10.1128/mBio.01982-14.
View
8.
Deng Q, Gao Y, Rui B, Li X, Liu P, Han Z
. Double-network hydrogel enhanced by SS31-loaded mesoporous polydopamine nanoparticles: Symphonic collaboration of near-infrared photothermal antibacterial effect and mitochondrial maintenance for full-thickness wound healing in diabetes mellitus. Bioact Mater. 2023; 27:409-428.
PMC: 10160601.
DOI: 10.1016/j.bioactmat.2023.04.004.
View
9.
Chen H, Fu S, Chen X, Chen R, Tan H
. Adenosine Triphosphate-Activated Cascade Reactor for On-Demand Antibacterial Treatment Through Controlled Hydroxyl Radical Generation. Small. 2023; 20(24):e2309403.
DOI: 10.1002/smll.202309403.
View
10.
Singla S, Harjai K, Katare O, Chhibber S
. Encapsulation of Bacteriophage in Liposome Accentuates Its Entry in to Macrophage and Shields It from Neutralizing Antibodies. PLoS One. 2016; 11(4):e0153777.
PMC: 4846161.
DOI: 10.1371/journal.pone.0153777.
View
11.
Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W
. A review on nanosystems as an effective approach against infections of . Int J Nanomedicine. 2018; 13:7333-7347.
PMC: 6233487.
DOI: 10.2147/IJN.S169935.
View
12.
Wang X, Qin X, Liu Y, Fang Y, Meng H, Shen M
. Plasmonic Supramolecular Nanozyme-Based Bio-Cockleburs for Synergistic Therapy of Infected Diabetic Wounds. Adv Mater. 2024; 36(49):e2411194.
DOI: 10.1002/adma.202411194.
View
13.
Jia C, Guo Y, Wu F
. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small. 2021; 18(6):e2103868.
DOI: 10.1002/smll.202103868.
View
14.
Peng H, Rossetto D, Mansy S, Jordan M, Roos K, Chen I
. Treatment of Wound Infections in a Mouse Model Using Zn-Releasing Phage Bound to Gold Nanorods. ACS Nano. 2022; 16(3):4756-4774.
PMC: 8981316.
DOI: 10.1021/acsnano.2c00048.
View
15.
Djordjevic S, Jarocki V, Seemann T, Cummins M, Watt A, Drigo B
. Genomic surveillance for antimicrobial resistance - a One Health perspective. Nat Rev Genet. 2023; 25(2):142-157.
DOI: 10.1038/s41576-023-00649-y.
View
16.
Wu Y, Song Z, Wang H, Han H
. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat Commun. 2019; 10(1):4464.
PMC: 6775118.
DOI: 10.1038/s41467-019-12233-2.
View
17.
Yan S, Xu S, Wang Y, You J, Guo C, Wu X
. A Hydrogel Dressing Comprised of Silk Fibroin, Ag Nanoparticles, and Reduced Graphene Oxide for NIR Photothermal-Enhanced Antibacterial Efficiency and Skin Regeneration. Adv Healthc Mater. 2024; 13(23):e2400884.
DOI: 10.1002/adhm.202400884.
View
18.
Xu Y, Li C, Ma X, Tuo W, Tu L, Li X
. Long wavelength-emissive Ru(II) metallacycle-based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment. Proc Natl Acad Sci U S A. 2022; 119(32):e2209904119.
PMC: 9371697.
DOI: 10.1073/pnas.2209904119.
View
19.
Chen S, Huang B, Tian J, Zhang W
. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater. 2024; 13(27):e2401211.
DOI: 10.1002/adhm.202401211.
View
20.
Zhou G, Qiu X, Wu X, Lu S
. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite. J Hazard Mater. 2020; 408:124883.
DOI: 10.1016/j.jhazmat.2020.124883.
View