6.
Arstikaitis P, Gauthier-Campbell C, Carolina Gutierrez Herrera R, Huang K, Levinson J, Murphy T
. Paralemmin-1, a modulator of filopodia induction is required for spine maturation. Mol Biol Cell. 2008; 19(5):2026-38.
PMC: 2366842.
DOI: 10.1091/mbc.e07-08-0802.
View
7.
Avery A, Thomas D, Hays T
. β-III-spectrin spinocerebellar ataxia type 5 mutation reveals a dominant cytoskeletal mechanism that underlies dendritic arborization. Proc Natl Acad Sci U S A. 2017; 114(44):E9376-E9385.
PMC: 5676893.
DOI: 10.1073/pnas.1707108114.
View
8.
Lin A, Prochniewicz E, James Z, Svensson B, Thomas D
. Large-scale opening of utrophin's tandem calponin homology (CH) domains upon actin binding by an induced-fit mechanism. Proc Natl Acad Sci U S A. 2011; 108(31):12729-33.
PMC: 3150896.
DOI: 10.1073/pnas.1106453108.
View
9.
Zhou D, Lambert S, Malen P, Carpenter S, Boland L, Bennett V
. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol. 1998; 143(5):1295-304.
PMC: 2133082.
DOI: 10.1083/jcb.143.5.1295.
View
10.
Hu B, Copeland N, Gilbert D, Jenkins N, Kilimann M
. The paralemmin protein family: identification of paralemmin-2, an isoform differentially spliced to AKAP2/AKAP-KL, and of palmdelphin, a more distant cytosolic relative. Biochem Biophys Res Commun. 2001; 285(5):1369-76.
DOI: 10.1006/bbrc.2001.5329.
View
11.
Willems J, de Jong A, Scheefhals N, Mertens E, Catsburg L, Poorthuis R
. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol. 2020; 18(4):e3000665.
PMC: 7176289.
DOI: 10.1371/journal.pbio.3000665.
View
12.
Rain J, Legrain P
. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet. 1997; 16(3):277-82.
DOI: 10.1038/ng0797-277.
View
13.
Efimova N, Korobova F, Stankewich M, Moberly A, Stolz D, Wang J
. βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons. J Neurosci. 2017; 37(27):6442-6459.
PMC: 5511878.
DOI: 10.1523/JNEUROSCI.3520-16.2017.
View
14.
Korsgren C, Lux S
. The carboxyterminal EF domain of erythroid alpha-spectrin is necessary for optimal spectrin-actin binding. Blood. 2010; 116(14):2600-7.
PMC: 2953892.
DOI: 10.1182/blood-2009-12-260612.
View
15.
Lorenzo D, Edwards R, Slavutsky A
. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci. 2023; 24(4):195-212.
PMC: 10598481.
DOI: 10.1038/s41583-022-00674-6.
View
16.
Fukami K, Sawada N, Endo T, Takenawa T
. Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin. J Biol Chem. 1996; 271(5):2646-50.
DOI: 10.1074/jbc.271.5.2646.
View
17.
Galiano M, Jha S, Ho T, Zhang C, Ogawa Y, Chang K
. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell. 2012; 149(5):1125-39.
PMC: 3361702.
DOI: 10.1016/j.cell.2012.03.039.
View
18.
Han B, Zhou R, Xia C, Zhuang X
. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proc Natl Acad Sci U S A. 2017; 114(32):E6678-E6685.
PMC: 5559029.
DOI: 10.1073/pnas.1705043114.
View
19.
Young P, Gautel M
. The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J. 2000; 19(23):6331-40.
PMC: 305858.
DOI: 10.1093/emboj/19.23.6331.
View
20.
Dubey S, Bhembre N, Bodas S, Veer S, Ghose A, Callan-Jones A
. The axonal actin-spectrin lattice acts as a tension buffering shock absorber. Elife. 2020; 9.
PMC: 7190353.
DOI: 10.7554/eLife.51772.
View