Classification for Alzheimer's Disease and Frontotemporal Dementia Via Resting-state Electroencephalography-based Coherence and Convolutional Neural Network
Overview
Affiliations
The study aimed to diagnose of Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) based on brain functional connectivity features extracted via resting-state Electroencephalographic (EEG) signals, and subsequently developed a convolutional neural network (CNN) model, Coherence-CNN, for classification. First, a publicly available dataset of EEG resting state-closed eye recordings containing 36 AD subjects, 23 FTD subjects, and 29 cognitively normal (CN) subjects was used. Then, coherence metrics were utilized to quantify brain functional connectivity, and the differences in coherence between groups across various frequency bands were investigated. Next, spectral clustering was used to analyze variations and differences in brain functional connectivity related to disease states, revealing distinct connectivity patterns in brain electrode position maps. The results demonstrated that brain functional connectivity between different regions was more robust in the CN group, while the AD and FTD groups exhibited various degrees of connectivity decline, reflecting the pronounced differences in connectivity patterns associated with each condition. Furthermore, Coherence-CNN was developed based on CNN and the feature of coherence for three-class classification, achieving a commendable accuracy of 94.32% through leave-one-out cross-validation. This study revealed that Coherence-CNN demonstrated significant performance for distinguishing AD, FTD, and CN groups, supporting the disorder of brain functional connectivity in AD and FTD.