» Articles » PMID: 40038468

Train Clinical AI to Reason Like a Team of Doctors

Overview
Journal Nature
Specialty Science
Date 2025 Mar 4
PMID 40038468
Authors
Affiliations
Soon will be listed here.
References
1.
Ghassemi M, Oakden-Rayner L, Beam A . The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health. 2021; 3(11):e745-e750. DOI: 10.1016/S2589-7500(21)00208-9. View

2.
Narla A, Kuprel B, Sarin K, Novoa R, Ko J . Automated Classification of Skin Lesions: From Pixels to Practice. J Invest Dermatol. 2018; 138(10):2108-2110. DOI: 10.1016/j.jid.2018.06.175. View

3.
Chanda T, Hauser K, Hobelsberger S, Bucher T, Nogueira Garcia C, Wies C . Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma. Nat Commun. 2024; 15(1):524. PMC: 10789736. DOI: 10.1038/s41467-023-43095-4. View

4.
Rosell L, Alexandersson N, Hagberg O, Nilbert M . Benefits, barriers and opinions on multidisciplinary team meetings: a survey in Swedish cancer care. BMC Health Serv Res. 2018; 18(1):249. PMC: 5887214. DOI: 10.1186/s12913-018-2990-4. View

5.
Soukup T, Gandamihardja T, McInerney S, Green J, Sevdalis N . Do multidisciplinary cancer care teams suffer decision-making fatigue: an observational, longitudinal team improvement study. BMJ Open. 2019; 9(5):e027303. PMC: 6549703. DOI: 10.1136/bmjopen-2018-027303. View