6.
Setia A, Vallamkonda B, Challa R, Mehata A, Badgujar P, Muthu M
. Herbal Theranostics: Controlled, Targeted Delivery and Imaging of Herbal Molecules. Nanotheranostics. 2024; 8(3):344-379.
PMC: 10988210.
DOI: 10.7150/ntno.94987.
View
7.
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M
. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. Photoacoustics. 2023; 32:100533.
PMC: 10448345.
DOI: 10.1016/j.pacs.2023.100533.
View
8.
Wang Q, Gong P, Afsharan H, Joo C, Morellini N, Fear M
. burn scar assessment with speckle decorrelation and joint spectral and time domain optical coherence tomography. J Biomed Opt. 2023; 28(12):126001.
PMC: 10704265.
DOI: 10.1117/1.JBO.28.12.126001.
View
9.
Zhong N, Wang H, Huang X, Li Z, Cao L, Huo F
. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol. 2023; 95:52-74.
DOI: 10.1016/j.semcancer.2023.07.002.
View
10.
Hayavi-Haghighi M, Alipour J
. Applications, opportunities, and challenges in using Telehealth for burn injury management: A systematic review. Burns. 2023; 49(6):1237-1248.
DOI: 10.1016/j.burns.2023.07.001.
View
11.
Dong Y, Qiu Y, Yang D, Yu L, Zuo D, Zhang Q
. Potential application of dynamic contrast enhanced ultrasound in predicting microvascular invasion of hepatocellular carcinoma. Clin Hemorheol Microcirc. 2021; 77(4):461-469.
DOI: 10.3233/CH-201085.
View
12.
Dhamija P, Mehata A, Setia A, Priya V, Malik A, Bonlawar J
. Nanotheranostics: Molecular Diagnostics and Nanotherapeutic Evaluation by Photoacoustic/Ultrasound Imaging in Small Animals. Mol Pharm. 2023; 20(12):6010-6034.
DOI: 10.1021/acs.molpharmaceut.3c00708.
View
13.
Schieffelers D, Dombrecht D, Lafaire C, De Cuyper L, Rose T, Meirte J
. Reliability and feasibility of skeletal muscle ultrasound in the acute burn setting. Burns. 2022; 49(1):68-79.
DOI: 10.1016/j.burns.2022.03.003.
View
14.
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C
. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev. 2024; 124(13):8307-8472.
DOI: 10.1021/acs.chemrev.4c00009.
View
15.
Chauhan J, Goyal P
. BPBSAM: Body part-specific burn severity assessment model. Burns. 2020; 46(6):1407-1423.
DOI: 10.1016/j.burns.2020.03.007.
View
16.
Wilson R, Rowland R, Kennedy G, Campbell C, Joe V, Chin T
. Review of machine learning for optical imaging of burn wound severity assessment. J Biomed Opt. 2024; 29(2):020901.
PMC: 10869118.
DOI: 10.1117/1.JBO.29.2.020901.
View
17.
Khanam F, Perera A, Al-Naji A, Mcintyre T, Chahl J
. Integrating RGB-thermal image sensors for non-contact automatic respiration rate monitoring. J Opt Soc Am A Opt Image Sci Vis. 2024; 41(6):1140-1151.
DOI: 10.1364/JOSAA.520757.
View
18.
Badalamenti G, Ferrer C, Calvagna C, Franchin M, Piffaretti G, Taglialavoro J
. Major vascular traumas to the neck, upper limbs, and chest: Clinical presentation, diagnostic approach, and management strategies. Semin Vasc Surg. 2023; 36(2):258-267.
DOI: 10.1053/j.semvascsurg.2023.04.010.
View
19.
Nguyen P, Stanislaus I, McGahon C, Pattabathula K, Bryant S, Pinto N
. Quality assurance in 3D-printing: A dimensional accuracy study of patient-specific 3D-printed vascular anatomical models. Front Med Technol. 2023; 5:1097850.
PMC: 9941637.
DOI: 10.3389/fmedt.2023.1097850.
View
20.
Bakheet S, Al-Hamadi A
. Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification. Comput Biol Med. 2021; 137:104781.
PMC: 8382592.
DOI: 10.1016/j.compbiomed.2021.104781.
View